Skip to main content
Log in

Small chicken growth hormone (scGH) variant in the neural retina

Structure-function correlates

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A novel variant of chicken growth hormone (cGH) that is severely truncated has recently been discovered in the neural retina. It is, however, unknown whether this protein binds to GH receptors (GHRs) and has biological activity. This possibility has therefore been addressed by homology modeling, using human (h)GH as a template because it is the only GH molecule with a crystal structure and because hGH binds to cGH receptors (cGHRs). Most of the residues of the small (s)cGH model fitted the hGH template, apart from two restricted regions from Ser 12 to Gln 20 and from Ser 55 to Val 58. The scGH model differs, however, from hGH in structure: hGH is composed of a four-helix bundle, whereas scGH has three main helices. Helices 2, 3, and 4 of hGH correspond to helices 1, 2, and 3 of scGH, but they are longer by one, four, and one residues, respectively. The secondary structure of the C-terminus of scGH is therefore similar to C-terminal hGH. The N-terminus of scGH is, however, severely truncated, lacking the residues of the full-length molecule derived from exons 1, 2, and 3. The N-terminus of scGH also includes 20 residues derived from intron C of full-length cGH. The predicted structure of its N-terminus has no classical secondary structure (α-helix or β-sheet), whereas the N-terminus of hGH is composed of helix 1 and two mini-helices located between helix 1 and 2. This difference in ribbon structure results in a difference in the overall shape of the scGH model and hGH.

The possibility that scGH could bind to a GHR dimer was assessed by examining the primary and hypothetical tertiary structure of scGH. hGH binds the extracellular domain (ECD) of two GHRs sequentially at its binding site 1 (or high affinity site) then at its binding site 2 (or low affinity site). Sequence alignment of scGH with hGH demonstrates that scGH lacks three key residues (of 14) at site 1 and nine residues (of 15) at site 2. It is therefore unlikely that tight binding of ECD1 to the site 1 of scGH could occur. ScGH also lacks most of the site 2 residues, suggesting that it is unlikely that ECD2 would bind to the scGH model. In summary, we have developed a novel, structural model of scGH, with implications for its putative actions through classical GHRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudet M.L., Sanders E.J., and Harvey S. (2005) Small growth hormone variant (scGH) in the early chick embryo. Proc. 87th Ann. Meet. Endocr. Soc., San Diego, CA: P1–73.

  • Baudet M. L., Sanders E. J., and Harvey S. (2003) Retinal growth hormone in the chick embryo. Endocrinology 144, 5459–5468.

    Article  PubMed  CAS  Google Scholar 

  • Bernat B., Pal G., Sun M., and Kossiakoff A.A. (2003) Determination of the energetics governing the regulatory step in growth hormone-induced receptor homodimerization. Proc. Natl. Acad. Sci. U. S. A. 100, 952–957.

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino J. S., Roguin L. P., and Paladini A. C. (1983) Formation of complexes between 125I-labelled human or bovine somatotropins and binding proteins in vivo in rat liver and kidney. Biochem J. 214, 121–132.

    PubMed  CAS  Google Scholar 

  • Casanueva F. F. (1992) Physiology of growth hormone secretion and action. Endocrinol. Metabol. Clinics N. Am. 21, 483–517.

    CAS  Google Scholar 

  • Chantalat L., Jones N. D., Korber F., Navaza J., and Pavlovsky A. G. (1995) The crystal structure of wildtype growth hormone at 2.5 angstrom resolution. Prol. Pep. Lett. 2, 333–340.

    CAS  Google Scholar 

  • Clackson T., Ultsch M. H., Wells J. A., and de Vos A. M. (1998) Structural and functional analysis of the 1:1 growth hormone, receptor complex reveals the molecularbasis for receptor affinity. J. Mol. Biol. 277, 1111–1128.

    Article  PubMed  CAS  Google Scholar 

  • Clackson T. and Wells J. A. (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386.

    Article  PubMed  CAS  Google Scholar 

  • Cokol M., Nair R., and Rost B. (2000) Finding nuclear localization signals. EMBO Rep. 1, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham B. C., Ultsch M., de Vos A. M., Mulkerrin M. G., Clauser K. R., and Wells J. A. (1991) Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254, 821–825.

    Article  PubMed  CAS  Google Scholar 

  • DeLano W. L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA.

  • De Palo E. F., De Filippis V., Gatti R., and Spinella P. (2006) Growth hormone isotorms and segments/fragments, molecular structure and laboratory measurement. Clin. Chim. Acta 364, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • De Palo E. F., Gatti R., Antonelli G., and Spinella P. (2006) Growth hormone isoforms, segments/fragments. Does a link exist with multifunctionality? Clin. Chim. Acta 364, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • de Vos A. M., Ultsch M., and Kossiakoff A. A. (1992) Human growth hormone and extracellular domain of its receptor, crystal structure of the complex. Science 255, 306–312.

    Article  PubMed  Google Scholar 

  • Fraser R. A. and Harvey S. (1992) Ubiquitous distribution of growth hormone receptors and/or binding proteins in adenohypophyseal tissue. Endocrinology 130, 3593–3600.

    Article  PubMed  CAS  Google Scholar 

  • Granot I., Halevy O., Tchelet A., et al. (1993) Effect of N-terminal modified analogs of growth hormone on collagen synthesis in avian skin fibroblasts. Mol. Cell. Endocrinol. 92, 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Guex N. and Peitsch M. C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer, an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  • Harvey S., Baudet M-L., and Sanders E. J. (2006) Evidence for the expression and translation of a novel growth hormone transcript in central and peripheral tissues of chick embryos. Neuropeptides 40, 151.

    Article  Google Scholar 

  • Harvey S. and Hull K. L. (2003) Neural growth hormone, an update. J. Mol. Neurosci. 20, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Harvey S., Johnson C. D., and Sanders E. J. (2001) Growth hormone in neural tissues of the chick embryo. J. Endocrinol. 169, 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Harvey S., Johnson C. D., and Sanders E. J. (2000) Extrapituitary growth hormone in peripheral tissues of early chick embryos. J. Endocrinol. 166, 489–502.

    Article  PubMed  CAS  Google Scholar 

  • Kossiakoff A. A. and de Vos A. M. (1999) Structural basis for cytokine-receptor recognition and receptor activation. Adv. Prot. Chem. 52, 67–108.

    Article  Google Scholar 

  • Krishnam K. A., Proudman J. A., and Bahr J. M. (1989) Avian growth hormone receptor assay, use of chicken and turkey liver membranes. Mol. Cell. Endocrinol. 66, 125–134.

    Article  Google Scholar 

  • Langenheim J. F., Tan D., Walker A. M., and Chen W. Y. (2006) Two wrongs can make a right, dimers of prolactin and growth hormone receptor antagonists behave as agonists. Mol. Endocrinol. 20, 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln D. T., Sinowatz F., Temmim-Baker L., Baker H. I., Kolle S., and Waters M. J. (1998) Growth hormone receptor expression in the nucleus and cytoplasm of normal and neoplastic cells. Histochem. Cell Biol. 109, 141–159.

    Article  PubMed  CAS  Google Scholar 

  • Lobie P.E., Barnard R., and Waters M.J. (1991) The nuclear growth hormone receptor binding protein. Antigenic and physicochemical characterization. J. Biol. Chem. 266, 22,645–22,652.

    CAS  Google Scholar 

  • Lobie P. E., Mertani H., Morel G., Morales-Bustos O., Norstedt G., and Waters M.J. (1994) Receptor-mediated nuclear translocation of growth hormone. J. Biol. Chem. 269, 21,330–21,339.

    CAS  Google Scholar 

  • Lobie P. E., Wood T. J., Chen C. M., Waters M. J., and Norstedt G. (1994) Nuclear translocation and anchorage of the growth hormone receptor. J. Biol. Chem. 269, 31,735–31,746.

    CAS  Google Scholar 

  • Macara I. G. (2001) Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594.

    Article  PubMed  CAS  Google Scholar 

  • Mertani H. C., Raccurt M., Abbate A., et al. (2003) Nuclear translocation and retention of growth hormone. Endocrinology 144, 3182–3195.

    Article  PubMed  CAS  Google Scholar 

  • Monsonego E., Baunbach W. R., Lavelin I., Gertler A., Hurwitz S., and Pines M. (1997) Generation of growth hormone binding protein by avian growth plate chondrocytes is dependent on cell differentiation. Mol. Cell. Endocrinol. 135, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Nakai K. and Horton P. (1999) PSORT, a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–35.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch M. C. (1995) Protein modeling by e-mail. Bio/Technology 13, 658–660.

    Article  CAS  Google Scholar 

  • Rezvani I., Maddaiah V. T., Collipp P. J., Thomas J., and Chen S. Y. (1973) Kinetics of uptake and subcellular distribution of human growth hormone in liver slices. Biochem Med. 7, 432–440.

    Article  PubMed  CAS  Google Scholar 

  • Sanders E. J., Walter M. A., Parker E., Aramburo C., and Harvey S. (2003) Opticin binds retinal growth hormone in the embryonic vitreous. Invest. Ophthalmol. Vis. Sci. 44, 5404–5409.

    Article  PubMed  Google Scholar 

  • Schwede T., Kopp J., Guex N., and Peitsch M.C. (2003) SWISS-MODEL, an automated protein homologymodeling server. Nuc. Acids Res. 31, 3381–3385.

    Article  CAS  Google Scholar 

  • Silver P.A. (1991) How proteins enter the nucleus. Cell 64, 489–497.

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom M., Lundqvist T., Rodin J., Giebel L. B., Milligan D., and Norstedt G. (1996) Crystal structure of an antagonist mutant of human growth hormone, G120R, in complex with its receptor at 2.9 A resolution. J. Biol. Chem. 271, 32,197–32,203.

    CAS  Google Scholar 

  • Takeuchi S., Haneda M., Teshigawara K., and Takahashi S. (2001) Identification of a novel GH isoform, a possible link between GH and melanocortin systems in the developing chicken eye. Endocrinology 142, 5158–5166.

    Article  PubMed  CAS  Google Scholar 

  • Walsh S. T., Jevitts L. M., Sylvester J. E., and Kossiakoff A. A. (2003) Site2 binding energetics of the regulatory step of growth hormone-induced receptor homodimerization. Prot. Sci. 12, 1960–1970.

    Article  CAS  Google Scholar 

  • Waters M. J., Hoang H. N., Fairlie D. P., Pelekanos R. A., and Brown R. J. (2006) New insights into growth hormone action. J. Mol. Endocrinol. 36, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Yoon J. B., Berry S. A., Seelig S., and Towle H. C. (1990) An induciblenuclear factor binds to a growth hormoneregulated gene. J. Biol. Chem. 265, 19,947–19,954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Harvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudet, ML., Harvey, S. Small chicken growth hormone (scGH) variant in the neural retina. J Mol Neurosci 31, 261–271 (2007). https://doi.org/10.1385/JMN:31:03:261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:31:03:261

Index Entries

Navigation