Skip to main content
Log in

Meta-analysis of 12 genomic studies in bipolar disorder

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Multiple genome-wide expression studies of bipolar disorder have been published. However, a unified picture of the genomic basis for the disease has not yet emerged. Genes identified in one study often fail to be identified in other studies, prompting the question of whether microarray studies in the brain are inherently unreliable. To answer this question, we performed a meta-analysis of 12 microarray studies of bipolar disorder. These studies included >500 individual array samples, on a range of microarray platforms and brain regions. Although we confirmed that individual studies showed some differences in results, clear and striking regulation patterns emerged across the studies. These patterns were found at the individual gene level, at the functional level, and at the broader pathway level. The patterns were generally found to be reproducible across platform and region, and were highly statistically significant. We show that the seeming discordance between the studies was primarily a result of the following factors, which are also typical for other brain array studies: (1) Sample sizes were, in retrospect, too small; (2) criteria were at once too restrictive (generally focusing on fold changes >1.5) and too broad (generally using p<0.05 or p<0.01 as criteria for significance); and (3) statistical adjustments were not consistently applied for confounders. In addition to these general conclusions, we also summarize the primary biological findings of the meta-analysis, focusing on areas that confirm previous research and also on novel findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre Samudio A. J. and Nicolini H. (2005) DRD4 polymorphism and the association with mental disorders. Rev. Invest. Clin. 57, 65–75.

    PubMed  CAS  Google Scholar 

  • Altar C. A., Jurata L. W., Charles V., Lemire A., Liu P., Bukhman Y., et al. (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol. Psychiatry 58, 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Baron M. (2002) Manic-depression genes and the new millennium: poised for discovery. Mol. Psychiatry 7, 342–358.

    Article  PubMed  CAS  Google Scholar 

  • Barrett T. B., Hauger R. L., Kennedy J. L., Sadovnick A. D., Remick R. A., Keck P. E., et al. (2003) Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol. Psychiatry 8, 546–557.

    Article  PubMed  CAS  Google Scholar 

  • Benes F. M., Matzilevich D., Burke R. E., and Walsh J. (2006) The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol. Psychiatry 11(3), 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Bezchlibnyk Y. B., Wang J. F., McQueen G. M., and Young L. T. (2001) Gene expression differences in bipolar disorder revealed by cDNA array analysis of postmortem frontal cortex. J. Neurochem. 79, 826–834.

    Article  PubMed  CAS  Google Scholar 

  • Blair I. P., Adams L. J., Badenhop R. F., Moses M. J., Scimone A., Morris J. A., et al. (2002) A transcript map encompassing a susceptibility locus for bipolar affective disorder on chromosome 4q35. Mol. Psychiatry 7, 867–873.

    Article  PubMed  CAS  Google Scholar 

  • Costa E., Davis J., Grayson D. R., Guidotti A., Pappas G. D., and Pesold C. (2001) Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol. Dis. 8, 723–742.

    Article  PubMed  CAS  Google Scholar 

  • De Luca V., Likhodi O., Van Tol H. H., Kennedy J. L., and Wong A. H. (2005) Tryptophan hydroxylase 2 gene expression and promoter polymorphisms in bipolar disorder and schizophrenia. Psychopharmacology (Berl.) 183, 378–382.

    Article  CAS  Google Scholar 

  • Dennis G. Jr., Sherman B. T., Hosack D. A., Yang J., Gao W., Lane H. C., and Lempicki R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3.

  • Eastwood S. L. and Harrison P. J. (2000) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol. Psychiatry 5, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi S. H., Laurence J. A., Araghi Niknam M., Stary J. M., Schulz S. C., Lee S., and Gottesman I. I. (2004) Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr. Res. 69, 317–323.

    Article  PubMed  Google Scholar 

  • Grayson D. R., Jia X., Chen Y., Sharma R. P., Mitchell C. P., Guidotti A., and Costa E. (2005) Reelin promoter hypermethylation in schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 102, 9341–9346.

    Article  PubMed  CAS  Google Scholar 

  • Higgs B. W., Elashoff M., Richman S, and Barci B. (2006) An online database for brain disease research. BMC Genomics 7, 70.

    Article  PubMed  Google Scholar 

  • Hurd Y. L. (2002) Subjects with major depression or bipolar disorder show reduction of prodynorphin mRNA expression in discrete nuclei of the amygdaloid complex. Mol. Psychiatry 7, 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K., Bundo M., and Kato T. (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum. Mol. Genet. 14, 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K., Kakiuchi C., Bundo M., Ikeda K., and Kato T. (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol. Psychiatry 9, 406–416.

    Article  PubMed  CAS  Google Scholar 

  • Jurata L. W., Bukhman Y. V., Charles V., Capriglione F., Bullard J., Lemire A. L., et al. (2004) Comparison of microarray-based mRNA profiling technologies for identification of psychiatric disease and drug signatures. J. Neurosci. Methods 138, 173–188.

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi C., Iwamoto K., Ishiwata M., Bundo M., Kasahara T., Kusumi I., et al. (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat. Genet. 35, 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Kan P. X., Popendikyte V., Kaminsky Z. A., Yolken R. H., and Petronis A. (2004) Epigenetic studies of genomic retroelements in major psychosis. Schizophr. Res. 67, 95–106.

    Article  PubMed  Google Scholar 

  • Kapczinski F., Frey B. N., and Zannatto V. (2004) Physiopathology of bipolar disorders: what has changed in the last 10 years? Rev. Bras. Psiquiatr. 26, 17–21.

    Article  PubMed  Google Scholar 

  • Kato T., Kuratomi G., and Kato N. (2005) Genetics of bipolar disorder. Drugs Today (Barc.) 41, 335–344.

    Article  CAS  Google Scholar 

  • Kelsoe J. R. and Niculescu A. B. III (2002) Finding genes for bipolar disorder in the functional genomics era: from convergent functional genomics to phenomics and back. CNS Spectr. 7, 215–216, 223–216.

    PubMed  Google Scholar 

  • Kim E. H., Kim T. S., Sun W., Kim D. S., Chung H. S., Kim D. K., and Park S. H. (2004) Differential regulation of metallothionein-I and metallothionein-II mRNA expression in the rat brain following traumatic brain injury. Mol. Cells 18, 326–331.

    PubMed  CAS  Google Scholar 

  • Koh P. O., Undie A. S., Kabbani N., Levenson R., Goldman-Rakic P. S., and Lidow M. S. (2003) Up-regulation of neuronal calcium sensor 1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci. U. S. A. 100, 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Konradi C. (2005) Gene expression microarray studies in polygenic psychiatric disorders: applications and data analysis. Brain Res. Brain Res. Rev. 50, 142–155.

    Article  PubMed  CAS  Google Scholar 

  • Konradi C., Eaton M., MacDonald M. L., Walsh J., Benes F. M., and Heckers S. (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch. Gen. Psychiatry 61, 300–308.

    Article  PubMed  CAS  Google Scholar 

  • Kuromitsu J., Yokoi A., Kawai T., Nagasu T., Aizawa T., Haga S., and Ikeda K. (2001) Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder. Brain Res. Gene Expr. Patterns 1, 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Law A. J. and Deakin J. F. (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport 12, 2971–2974.

    Article  PubMed  CAS  Google Scholar 

  • Law A. J., Weickert C. S., Hyde T. M., Kleinman J. E., and Harrison P. J. (2004) Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am. J. Psychiatry 161, 1848–1855.

    Article  PubMed  Google Scholar 

  • Lenox R. H. and Hahn C. G. (2000) Overview of the mechanism of action of lithium in the brain: fifty-year update. J. Clin. Psychiatry 61, 5–15.

    PubMed  CAS  Google Scholar 

  • Maier W., Hofgen B., Zobel A., and Rietschel M. (2005) Genetic models of schizophrenia and bipolar disorder: overlapping inheritance or discrete genotypes? Eur. Arch. Psychiatry Clin. Neurosci. 255, 159–166.

    Article  PubMed  Google Scholar 

  • Manji H. K., Bebchuk J. M., Moore G. J., Glitz D., Hasanat K. A., and Chen G. (1999) Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications. J. Clin. Psychiatry 60, 27–39, 40–21, 113–116.

    PubMed  Google Scholar 

  • Molnar M., Potkin S. G., Bunney W. E., and Jones E. G. (2003) MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. Biol. Psychiatry 53, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Munakata K., Iwamoto K., Bundo M., and Kato T. (2005) Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol. Psychiatry 57, 525–532.

    Article  PubMed  CAS  Google Scholar 

  • Natale J. E., Knight J. B., Cheng Y., Rome J. E., and Gallo V. (2004) Metallothionein I and II mitigate age-dependent secondary brain injury. J. Neurosci. Res. 78, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Ogden C. A., Rich M. E., Schork N. J., Paulus M. P., Geyer M. A., Lohr J. B., et al. (2004) Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol. Psychiatry 9, 1007–1029.

    Article  PubMed  CAS  Google Scholar 

  • Raybould R., Green E. K., MacGregor S., Gordon-Smith K., Heron J., Hyde S., et al. (2005) Bipolar disorder and polymorphisms in the dysbinding gene (DTNBP1). Biol. Psychiatry 57, 696–701.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y., Zhang L., Johnston N. L., Torrey E. F., and Yolken R. H. (2001) Serial analysis of gene expression in the frontal cortex of patients with bipolar disorder. Br. J. Psychiatry 41, s137-s141.

    Article  CAS  Google Scholar 

  • Thomson P. A., Wray N. R., Millar J. K., Evans K. L., Hellard S. L., Condie A., et al. (2005) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol. Psychiatry 10, 616, 657–668.

    Article  Google Scholar 

  • Tkachev D., Mimmack M. L., Ryan M. M., Wayland M., Freeman T., Jones P. B., et al. (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805.

    Article  PubMed  CAS  Google Scholar 

  • Torrey E. F., Webster M., Knable M., Johnston N., and Yolken R. H. (2000) The Stanley Foundation Brain Collection and Neuropathology Consortium. Schizophr. Res. 44, 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Veldic M., Guidotti A., Maloku E., Davis J. M., and Costa E. (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc. Natl. Acad. Sci. U.S.A. 102, 2152–2157.

    Article  PubMed  CAS  Google Scholar 

  • Webster M. J., Knable M. B., O’Grady J., Orthmann J., and Weickert C. S. (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol. Psychiatry 7, 924, 985–994.

    Article  Google Scholar 

  • Woo T. U., Walsh J. P., and Benes F. M. (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch. Gen. Psychiatry 61, 649–657.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon W. Higgs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elashoff, M., Higgs, B.W., Yolken, R.H. et al. Meta-analysis of 12 genomic studies in bipolar disorder. J Mol Neurosci 31, 221–243 (2007). https://doi.org/10.1385/JMN:31:03:221

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:31:03:221

Index Entries

Navigation