Skip to main content
Log in

The combination of homozygous MTHFR 677T and angiotensin II type-1 receptor 1166C variants confers the risk of small-vessel-associated ischemic stroke

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Previous studies have suggested that both angiotensin II type-1 receptor (AT1R) 1166C and methylenetetrahydrofolate reductase (MTHFR) 677T variants can have disadvantageous effects on the small-vessel circulation under certain conditions. The purpose of this study was to analyze the possible consequences of the simultaneous distribution of these two genetic variants in different types of ischemic stroke. The genetic and clinical data on 357 ischemic stroke patients and 263 control subjects were analyzed by using univariate and logistic statistical approaches. Neither the MTHFR677T nor the AT1R 1166C genetic variant alone conferred the risk of any subtype of ischemic stroke. The combination of the homozygous MTHFR 677TT genotype and at least one AT1R 1166C allele occurred more frequently in the ischemic stroke patients (8.68%) than in the controls (4.56%, p<0.05). Specific subclassification of the patients revealed an accumulation of this combination in small-vessel-associated ischemic stroke (12.2%, p<0.01); multivariate logistic regression analysis of the data confirmed this association, with an odds ratio of 2.66 (95% confidence interval, 1.28–7.89; p<0.05). These findings suggest that the combination of these two genetic factors can contribute to the development of small-vessel cerebral infarcts. Although the exact mechanism of action is not known, addition of the unfavourable effects on the endothelial function can be presumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agachan B., Isbir T., Yilmaz H., and Akoglu E. (2003) Angiotensin converting enzyme I/D, angiotensinogen T174M-M235T and angiotensin II type 1 receptor A1166C gene polymorphisms in Turkish hypertensive patients. Exp. Mol. Med. 35, 545–549.

    PubMed  CAS  Google Scholar 

  • Bonaa K. H. (2005) Homocyteine-lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med. 354, 1578–1588.

    Article  Google Scholar 

  • Brenner D., Labreuche J., Poirier O., et al. (2006) Reninangiotensin-aldosterone system in brain infarction and vascular death. Ann. Neurol. 58, 131–138.

    Article  CAS  Google Scholar 

  • Brown K. S., Kluijtmans L. A., and Young I. S. (2004) The 5,10-methylenetetrahydrofolate reductase C677T polymorphism interacts with smoking to increase homocysteine. Atherosclerosis 174, 315–322.

    PubMed  CAS  Google Scholar 

  • Casas J. P., Bautista L. E., Smeeth L., et al. (2005). Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet 365, 224–232.

    PubMed  CAS  Google Scholar 

  • Clark Z. E., Bowen D. J., Whatley S. D., et al. (1998) Genotyping method for methylenetetrahydrofolate reductase (C677T) thermolabile variant using heteroduplex technology, Clin. Chem. 44, 2360–2362.

    PubMed  CAS  Google Scholar 

  • Clarke R., Joachim C., Esiri M., et al. (2000) Leukoaraiosis at presentation and disease progression during follow-up in histologically confirmed cases of dementia. Ann. N.Y. Acad. Sci. 903, 497–500.

    Article  PubMed  CAS  Google Scholar 

  • Cronin S., Furie K. L., and Kellv P. I. (2005) Dose-related association of MTHFR 677T allele with risk of ischaemic stroke: evidence from a cumulative meta-analysis. Stroke 36, 1581–1587.

    Article  PubMed  CAS  Google Scholar 

  • De Ciuceis C., Amiri F., Brassard P., et al. (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 25, 2106–2113.

    Article  PubMed  CAS  Google Scholar 

  • Dikmen M., Ozbabalik D., Gunes H. V., et al. (2006) Acute stroke in relation to homocysteine and methylenetetrahydrofolate reductase gene polymorphisms. Acta Neurol. Scand. 113, 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Guyton A. C. (1986) The circulation, in Textbook of Medical Physiology (Guyton A. C., ed.) W. B. Saunders Company, Philadalphia: pp. 207–217.

    Google Scholar 

  • Hankey G. J. and Eikelboom J. W. (2005) Homocysteine and stroke. Lancet 365, 194–195.

    PubMed  Google Scholar 

  • Hassan A., Hunt B. J., O’Sullivan M., et al. (2003) Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain 126, 424–432.

    Article  PubMed  Google Scholar 

  • Hassan A., Hunt B. J., O’Sullivan M., et al. (2004) Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain 127, 212–219.

    Article  PubMed  Google Scholar 

  • Hindorff L. A., Heckbert S. R., Tracy R., et al. (2002) Angiotensin II type 1 receptor polymorphisms in the cardiovascular health study: relation to blood pressure, ethnicity, and cardiovascular events. Am. J. Hypertens. 15, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  • Inamoto N., Katsuya T., Kokubo Y., et al. (2003) Association of methylenetetrahydrofolate reductase gene polymorphism with carotid atherosclerosis depending on smoking status in a Japanese general population. Stroke 34, 1628–1633.

    Article  PubMed  CAS  Google Scholar 

  • Jiang S., Hsu Y. H., Xu X., et al. (2004) The C677T polymorphism of the methylenetetrahydrofolate reductase gene is associated with the level of decrease of diastolic blood pressure in essential hypertension patients treated by angiotensin-converting enzyme inhibitor. Throm. Res. 113, 361–369.

    Article  CAS  Google Scholar 

  • Jones A., Dhamrait S. S., Payne J. R., et al. (2003) Genetic variants of angiotensin II receptors and cardiovascular risk in hypertension. Hypertension 42, 500–506.

    Article  PubMed  CAS  Google Scholar 

  • Kazama K., Anrather J., Zhou P., et al. (2004) Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ. Res. 95, 1019–1026.

    Article  PubMed  CAS  Google Scholar 

  • Klerk M., Verhoef P., Clarke R., et al. (2002) MTHFR 677C T polymorphism and isk of coronary heart disease: metaanalysis. JAMA 288, 2023–2031.

    Article  PubMed  CAS  Google Scholar 

  • Linnebank M., Montenarh M., Kolsch H., et al. (2005) Common genetic variants of homocysteine metabolism in ischemic stroke: a case-control study. Eur. J. Neurol. 212, 614–618.

    Article  Google Scholar 

  • Neri Serneri G. G. (1981) Pathophysiological aspects of platelet aggregation in relation to blood flow rheology in microcirculation. Ric. Clin. Lab. 11, 39–46.

    PubMed  Google Scholar 

  • Paciaroni M., Silvestrelli G., Caso V., et al. (2003) Neurovascular territory involved in different etiological subtypes of ischemic stroke in the Perugia Stroke Registry. Eur. J. Neurol. 10, 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Paradowski B. and Maciejak A. (2005) TOAST classification of subtypes of ischaemic stroke: diagnostic and therapeutic procedures in stroke. A four-year observation. Cerebrovasc. Dis. 20, 319–324.

    Article  PubMed  Google Scholar 

  • Paut O. and Bissonnette B. (2002) Effects of temperature and haematocrit on the relationships between blood flow velocity and blood flow in a vessel of fixed diameter. Br. J. Anaesth. 88(2), 277–279.

    Article  PubMed  CAS  Google Scholar 

  • Pezzini A., Grassi M., Del Zotto E., et al. (2005) Cumulative effect of predisposing genotypes and their interaction with modifiable factors on the risk of ischaemic stroke in young adults. Stroke 36, 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Pezzini A., Grassi M., Del Zotto E., et al. (2006) Interaction of homocysteine and conventional predisposing factors on risk of ischaemic stroke in young adults. Consistency of phenotype-disease analysis and genotype-disease analysis. J. Neurol. Neurosurg. Psychiatry 77, 1150–1161.

    Article  PubMed  CAS  Google Scholar 

  • Rimm E. B., Willett W. C., Hu F. B., et al. (1998) Folate and vitamin B6 from diet and supplements in relation torisk of coronary hart disease among women. JAMA 279, 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Esparragon F., Hernandez-Perera O., Rodriguez-Perez J. C., et al. (2003) The effect of methylenetetrahydrofolate reductase C677T. Clin. Exp. Hypertens. 25, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Rubattu S., Di Angelantonio E., Stanzione R., et al. (2004) Gene polymorphisms of the renin-angiotensin-aldosterone system and the risk of ischemic stroke: a role of the A1166C/AT1 gene variant. J. Hypertens. 22, 2129–2134.

    Article  PubMed  CAS  Google Scholar 

  • Schulz U. G. and Rothwell P. M. (2003) Differences in vascular risk factors between etiological subtypes of ischemic stroke: importance of population-based studies. Stroke 34, 2050–2059.

    Article  PubMed  CAS  Google Scholar 

  • Smith G. D. and Ebrahim S. (2005) Folate supplementation and cardiovascular disease. Lancet 366, 1679–1681.

    Article  Google Scholar 

  • Stampfer M. J. and Colditz G. A. (1991) Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prev. Med. 20, 47–63.

    Article  PubMed  CAS  Google Scholar 

  • Stampfer M. and Rimm E. (2006) Folate supplementation and cardiovascular disease. Lancet 365, 1237–1238.

    Article  Google Scholar 

  • Szolnoki Z., Somogyvari F., Kondacs A., et al. (2002) Evaluation of the interactions of common genetic mutations in stroke subtypes. J. Neurol. 249, 1391–1397.

    Article  PubMed  CAS  Google Scholar 

  • Szolnoki Z., Somogyvari F., Kondacs A., et al. (2003) Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 74, 1615–1620.

    Article  PubMed  CAS  Google Scholar 

  • Szolnoki Z. and Melegh B. (2006a) Gene-gene and gene-environment interplay represent specific susceptibility for different types of ischaemic stroke and leukoaraiosis. Curr. Med. Chem. 13, 1627–1634.

    Article  PubMed  CAS  Google Scholar 

  • Szolnoki Z., Maasz A., Magyari L., et al. (2006b) Coexistence of angiotensin II type-1 receptor A1166C and angiotensin-converting enzyme D/D polymorphism suggests susceptibility for small-vessel-associated ischaemic stroke. Neuromol. Med. 28, 353–360.

    Article  CAS  Google Scholar 

  • Szolnoki Z., Havasi V., Talian G., et al. (2006c) Angiotensin II type-1 receptor A1166C polymorphism is associated with increased risk of ischaemic stroke in hypertensive smokers. J. Mol. Neurosci. 28, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Toole J. F., Malinow M. R., Chambless L. E., et al. (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: The vitamin intervention for stroke prevention (VISP) randomized controlled trial. JAMA 291, 565–575.

    Article  PubMed  CAS  Google Scholar 

  • Wald N. J. and Law M. R. (2003) A strategy to reduced cardiovascular disease by more than 80%. BMJ 326, 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S., Tagawa T., Yamakawa K., et al. (2005) Inhibition of the renin-angiotensin system prevents free fatty acid-induced acute endothelial dysfunction in humans. Arterioscler. Thromb. Vasc. Biol. 25, 2376–2380.

    Article  PubMed  CAS  Google Scholar 

  • Welch G. N. and Loscalzo J. (1998) Homocysteine and atherothrombosis. N. Engl. J. Med. 338, 1042–1050.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Szolnoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szolnoki, Z., Maasz, A., Magyari, L. et al. The combination of homozygous MTHFR 677T and angiotensin II type-1 receptor 1166C variants confers the risk of small-vessel-associated ischemic stroke. J Mol Neurosci 31, 201–207 (2007). https://doi.org/10.1385/JMN:31:03:201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:31:03:201

Index Entries

Navigation