Skip to main content

Advertisement

Log in

Effects of prolonged treatment with the opiate tramadol on prodynorphin gene expression in rat CNS

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A low abuse liability is reported for tramadol, an analgesic drug centrally acting through either opioid or nonopioid mechanisms. In this paper, we evaluated the effects of the repeated administration (7 d) of different doses of tramadol (10, 20, and 80 mg/kg, intraperitoneally) on the opioid precursor prodynorphin biosynthesis, in comparison with morphine (10 mg/kg, intraperitoneally), in the rat central nervous system (CNS). Northern analysis showed that morphine and tramadol produced different effects. While morphine caused a down-regulation of prodynorphin mRNA levels in all investigated areas (hypothalamus, hippocampus, and striatum), tramadol did not cause any significant change in the striatum, and did not decrease prodynorphin biosynthesis in the hypothalamus and in the hippocampus, at nontoxic doses (10 and 20 mg/kg). The highest dose of tramadol (80 mg/kg) decreased prodynorphin mRNA levels in the hypothalamus and the hippocampus but not in the striatum. These data give some information on tramadol effects at molecular level in the CNS. They indicate that the alterations of prodynorphin gene expression caused by tramadol and morphine show a different pattern that may be related to the different abuse potential of the two analgesic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamigbade T. A., Davidson C., Langford R. M., and Stamford J. A. (1997) Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br. J. Anaesth. 79, 352–356.

    PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Cicero T. J., Adams E. H., Geller A., et al. (1999) A post-marketing surveillance program to monitor Ultram (tramadol hydrochloride) abuse in the United States. Drug Alcohol Depend. 57, 7–22.

    Article  PubMed  CAS  Google Scholar 

  • D'Amour F. E. and Smith D. L. (1941) A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72, 74–79.

    Google Scholar 

  • Di Benedetto M., D'Addario C., Collins S. L., Izenwasser S., Candeletti S., and Romualdi P. (2004a) Role of serotonin on cocaine mediated effects on prodynorphin gene expression in the rat brain. J. Mol. Neurosci. 22, 213–222.

    Article  PubMed  Google Scholar 

  • Di Benedetto M., Feliciani D., D'Addario C., Izenwasser S., Candeletti S., and Romualdi P. (2004b) Effects of the selective norepinephrine uptake inhibitor nisoxetine on prodynorphin gene expression in rat CNS. Mol. Brain Res. 127, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Franceschini D., Lipartiti M., and Giusti P. (1999) Effect of acute and chronic tramadol on [3H]-norepinephrine uptake in rat cortical synaptosomes. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 23, 485–496.

    Article  CAS  Google Scholar 

  • Georges F., Stinus L., Bloch B., and Le Moine C. (1999) Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur. J. Neurosci. 11, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Giusti P., Buriani A., Cima L., and Lipartiti M. (1997) Effect of acute and chronic tramadol on [3H]-5-HT uptake in rat cortical synaptosomes. Br. J. Pharmacol. 122, 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Gunning B., Ponte P., Okayama H., Engel J., Blan H., and Kedes L. (1983) Isolation and characterization of full-length clones for human α-, β- and γ-actin mRNAs: skeletal but not cytoplasmatic actins have an amino-terminal cysteine that is subsequently removed. Mol. Cell. Biol. 3, 787–795.

    PubMed  CAS  Google Scholar 

  • Kayser V., Besson J.-M., and Guilbaud G. (1991) Effects of the analgesic agent tramadol in normal and arthritic rats: comparison with the effects of different opioids, including tolerance and cross-tolerance to morphine. Eur. J. Pharmacol. 195, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Koob J. F. and Le Moal M. (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Lee C. R., McTavish D., and Sorkin E. M. (1993) Tramadol. Drugs 46, 313–340.

    Article  PubMed  CAS  Google Scholar 

  • McClung C. A., Nestler E. J., and Zachariou V. (2005) Regulation of gene expression by chronic morphine and morphine withdrawal in the locus ceruleus and ventral tegmental area. J. Neurosci. 25, 6005–6015.

    Article  PubMed  CAS  Google Scholar 

  • Miranda H. F. and Pinardi G. (1998) Antinociception, tolerance, and physical dependence comparison between morphine and tramadol. Pharmacol. Biochem. Behav. 61, 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Mocchetti I., Ritter A., and Costa E. (1989) Down-regulation of proopiomelanocortin synthesis and beta-endorphin utilization in hypothalamus of morphine-tolerant rats. J. Mol. Neurosci. 1, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Murano T., Yamamoto H., Endo N., et al. (1978) Studies of dependence on tramadol in rats. Arzneim.-Forsch./Drug Res. 28, 152–158.

    CAS  Google Scholar 

  • Nestler E. J., Hope B. T., and Widnell K. L. (1993) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11, 995–1006.

    Article  PubMed  CAS  Google Scholar 

  • Nestler E. J. (1992) Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439–2450.

    PubMed  CAS  Google Scholar 

  • Nestler E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Preston K. L., Jasinski D. R., and Testa M. (1991) Abuse potential and pharmacological comparison of tramadol and morphine. Drug Alcohol Depend. 27, 7–17.

    Article  PubMed  CAS  Google Scholar 

  • Przewlocka B., Turchan J., Lason W., and Przewlocki R. (1996) The effect of single and repeated morphine administration on the prodynorphin system activity in the nucleus accumbens and striatum of the rat. Neuroscience 70, 749–754.

    Article  PubMed  CAS  Google Scholar 

  • Raffa R. B., Friderichs E., Reimann W., Shank R. P., Codd E. E., and Vaught J. L. (1992) Opioid and non opioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J. Pharmacol. Exp. Ther. 260, 275–85.

    PubMed  CAS  Google Scholar 

  • Raffa R. B. and Friderichs E. (1996) The basic science aspect of tramadol hydrochloride. Pain Rev. 3, 249–271.

    CAS  Google Scholar 

  • Raffa R. B., Friderichs E., Reimann W., et al. (1993) Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J. Pharmacol Exp. Ther. 267, 331–340.

    PubMed  CAS  Google Scholar 

  • Romualdi P., Lesa G., Donatini A., and Ferri S. (1995) Long-term exposure to opioid antagonists up-regulates prodynorphin gene expression in rat brain. Brain Res 672, 42–47.

    Article  PubMed  CAS  Google Scholar 

  • Romualdi P., Lesa G., and Ferri S. (1991) Chronic opiate agonists down-regulate prodynorphin gene expression in rat brain. Brain Res. 563, 132–136.

    Article  PubMed  CAS  Google Scholar 

  • Sacerdote P., Bianchi M., Manfredi B., and Panerai A. E. (1997) Effects of tramadol on immune responses and nociceptive thresholds in mice. Pain 72, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Scott L. J., and Perry C. M. (2000) Tramadol: a review of its use in perioperative pain. Drugs 60, 139–176.

    Article  PubMed  CAS  Google Scholar 

  • Tjon G. H. K., Voorn P., Vanderschuren L. J., et al. (1997) Delayed occurrence of enhanced striatal prodynorphin gene expression in behaviorally sensitized rats: differential long-term effects of intermittent and chronic morphine administration. Neuroscience 76, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Uhl G. R., Ryan J. P., and Schwartz J. P. (1988) Morphine alters preproenkephalin gene expression. Brain Res. 459, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Valle M., Garrido M. J., Pavon J. M., Calvo R., and Troconiz I. F. (2000) Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effects of main active metabolites of tramadol, (+)-O-desmethyltramadol and (−)-O-desmethyltramadol. J. Pharmacol. Exp. Ther. 293, 646–653.

    PubMed  CAS  Google Scholar 

  • Van Ree J. M., Gerrits M. A. F. M., and Vanderschuren L. J. (1999) Opioids, reward and addiction: an encounter of biology, psychology, and medicine. Pharmacol. Rev. 51, 341–396.

    PubMed  Google Scholar 

  • Zachariou V., Bolanos C. A., et al. (2006) An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nat. Neurosci. 9, 205–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanzio Candeletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candeletti, S., Lopetuso, G., Cannarsa, R. et al. Effects of prolonged treatment with the opiate tramadol on prodynorphin gene expression in rat CNS. J Mol Neurosci 30, 341–347 (2006). https://doi.org/10.1385/JMN:30:3:341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:30:3:341

Index Entries

Navigation