Skip to main content
Log in

Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The cornerstone of cell signaling is largely based on the phosphorylation state that is defined by the equili-brium of the activity of protein kinases and protein phosphatases. The role of protein tyrosine kinases in brain development, brain tumors, and neurodegenerative diseases was studied extensively, yet, the importance of protein tyrosine phosphatases (PTPs) in the development of glial cells was somewhat neglected. In this review, we have summarized recent findings of PTP expression during development of the central nervous system and the different cell types of the brain, from stem cells to mature glial cells, and highlighted the potential role of these enzymes in neuronal stem cell development, glioblastomas, and myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K., and Saito H. (1999) Astrocyte stellation induced by tyrosine kinase inhibitors in culture. Brain Res. 837, 306–308.

    Article  CAS  PubMed  Google Scholar 

  • Adamsky K., Schilling J., Garwood J., Faissner A., and Peles E. (2001) Glal tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene 20, 609–618.

    Article  CAS  PubMed  Google Scholar 

  • Alonso A., Sasin J., Bottini N., Friedberg I., Osterman A., Godzik A., et al. (2004) Protein tyrosine phosphatases in the human genome. Cell 117, 699–711.

    Article  CAS  PubMed  Google Scholar 

  • Autero M., Saharinen J., Pessa-Morikawa T., Soula-Rothhut M., Oetken C., Gassmann M., et al. (1994) Tyrosine phosphorylation of CD45 phosphotyrosine phosphatase by p50csk kinase creates a binding site for p56lck tyrosine kinase and activates the phosphatase. Mol. Cell. Biol. 14, 1308–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnea G., Grumet M., Milev P., Silvennoinen O., Levy J. B., Sap J., et al. (1994) Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin. J. Biol. Chem. 269, 14,349–14,352.

    CAS  Google Scholar 

  • Beltran P. J., Bixby J. L., and Masters B. A. (2003) Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J. Comp. Neurol. 456, 384–395.

    Article  CAS  PubMed  Google Scholar 

  • Bixby J. L. (2000) Receptor tyrosine phosphatases in axon growth and guidance. Neuroreport 11, R5–10.

    Article  CAS  PubMed  Google Scholar 

  • Blanchetot C., and den Hertog J. (2000) Multiple interactions between receptor protein-tyrosine phosphatase (RPTP) alpha and membrane-distal protein-tyrosine phosphatase domains of various RPTPs. J. Biol. Chem. 275, 12,446–12,452.

    Article  CAS  Google Scholar 

  • Bradbury E. J., Moon L. D., Popat R. J., King V. R., Bennett G. S., Patel P. N., et al. (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640.

    Article  CAS  PubMed  Google Scholar 

  • Brockdorff J., Williams S., Couture C., and Mustelin T. (1999) Dephosphorylation of ZAP-70 and inhibition of T cell activation by activated SHP1. Eur. J. Immunol. 29, 2539–2550.

    Article  CAS  PubMed  Google Scholar 

  • Burden-Gulley S. M., Ensslen S. E., and Brady-Kalnay S. M. (2002) Protein tyrosine phosphatase-mu differentially regulates neurite outgrowth of nasal and temporal neurons in the retina. J. Neurosci. 22, 3615–3627.

    CAS  PubMed  Google Scholar 

  • Calaora V., Rogister B., Bismuth K., Murray K., Brandt H., Leprince P., et al. (2001) Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J. Neurosci. 21, 4740–4751.

    CAS  PubMed  Google Scholar 

  • Canoll P. D., Barnea G., Levy J. B., Sap J., Ehrlich M., Silvennoinen O., et al. (1993) The expression of a novel receptor-type tyrosine phosphatase suggests a role in morphogenesis and plasticity of the nervous system. Brain Res. Dev. Brain Res. 75, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Canoll P. D., Petanceska S., Schlessinger J., and Musacchio J. M. (1996) Three forms of RPTP-beta are differentially expressed during gliogenesis in the developing rat brain and during glial cell differentiation in culture. J. Neurosci. Res. 44, 199–215.

    Article  CAS  PubMed  Google Scholar 

  • Chilton J. K., and Stoker A. W. (2000) Expression of receptor protein tyrosine phosphatases in embryonic chick spinal cord. Mol. Cell. Neurosci. 16, 470–480.

    Article  CAS  PubMed  Google Scholar 

  • Choi B. H., and Kim R. C. (1985) Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J. Neuroimmunol. 8, 215–235.

    Article  CAS  PubMed  Google Scholar 

  • Daigo Y., Isomura M., Nishiwaki T., Tamari M., Ishikawa S., Kai M., et al. (1999) Characterization of a 1200-kb genomic segment of chromosome 3p22-p21.3. DNA Res. 6, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Debant A., Serra-Pages C., Seipel K., O'Brien S., Tang M., Park, S. H., et al. (1996). The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate racspecific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. U.S.A. 93, 5466–5471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Hertog J., and Hunter T. (1996) Tight association of GRB2 with receptorprotein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains. EMBO J. 15, 3016–3027.

    Google Scholar 

  • den Hertog J., Pals C. E., Peppelenbosch M. P., Tertoolen L. G., de Laat S. W., and Kruijer W. (1993) Receptorprotein tyrosine phosphatase alpha activates pp60c-src and is involved in neuronal differentiation. EMBO J. 12, 3789–3798.

    Google Scholar 

  • den Hertog J., Tracy S., and Hunter T. (1994) Phosphorylation of receptor protein-tyrosine phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein GRB-2 in vivo. EMBO J. 13, 3020–3032.

    Google Scholar 

  • Dobbertin A., Rhodes K. E., Garwood J., Properzi F., Heck N., Rogers J. H., et al. (2003) Regulation of RPTP-beta/phosphacan expression and glycosaminoglycan epitopes in injured brain and cytokine-treated glia. Mol. Cell. Neurosci. 24, 951–971.

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F. (2003) The glial identity of neural stem cells. Nat. Neurosci. 6, 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  • Duffy P. E., Rapport M., and Graf L. (1980) Glial fibrillary acidic protein and Alzheimer-type senile dementia. Neurology 30, 778–782.

    Article  CAS  PubMed  Google Scholar 

  • Eckerich C., Zapf S., Ulbricht U., Muller S., Fillbrandt R., Westphal M., et al., (2006) Contactin is expressed in human astrocytic gliomas and mediates repulsive effects. Glia 53, 1–12.

    Article  PubMed  Google Scholar 

  • Ensslen-Craig S. E., and Brady-Kalnay S. M. (2005) PTP mu expression and catalytic activity are required for PTP mu-mediated neurite outgrowth and repulsion. Mol. Cell. Neurosci. 28, 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Fang K. S., Martins-Green M., Williams L. T., and Hanafusa H. (1996) Characterization of chicken protein tyrosine phosphatase alpha and its expression in the central nervous system. Brain Res. Mol. Brain Res. 37, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Fogarty M., Richardson W. D., and Kessaris N. (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959.

    Article  CAS  PubMed  Google Scholar 

  • Fox A. N., and Zinn K. (2005) The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase. Curr. Biol. 15, 1701–1711.

    Article  CAS  PubMed  Google Scholar 

  • Furuta M., Shiraishi T., Okamoto H., Mineta T., Tabuchi K., and Shiwa M. (2004) Identification of pleiotrophin in conditioned medium secreted from neural stem cells by SELDI-TOF and SELDI-tandem mass spectrometry. Brain Res. Dev. Brain Res. 152, 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Garratt A. N., Voiculescu O., Topilko P., Charnay P., and Birchmeier C. (2000) A dual role of erb B2 in myelination and in expansion of the schwann cell precursor pool. J. Cell Biol. 148, 1035–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebbink M. F., Zondag G. C., Wubbolts R. W., Beijershergen R. L., van Etten I. and Moolenaar W. H. (1993) Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J. Biol. Chem. 268, 16,101–16,104.

    CAS  Google Scholar 

  • Gharami K., and Das S. (2003) Role of protein-tyrosine phosphatases on beta-adrenergic receptor mediated morphological differentiation of astrocytes. J. Chem. Neuroanat. 26, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Henn H., and Elson A. (2003) Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J. Biol. Chem., 278, 15,579–15,586.

    Article  CAS  Google Scholar 

  • Gonzales C. Lin R. C., and Chesselet M. F. (1992) Relative sparing of GABA ergic interneurons in the striatum of gerbils with ischemia-induced lesions. Neurosci. Lett. 135, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Grumet M., Milev P., Sakurai T., Karthikeyan L., Bourdon M., Margolis R. K., et al. (1994) Interactions with tenascin and differential effects on cell adhesion of neurocan and phosphacan, two major chondroitin sulfate proteoglycans of nervous tissue. J. Biol. Chem. 269, 12,142–12,146.

    CAS  Google Scholar 

  • Gustafson A. L., and Mason I. (2000) Expression of receptor tyrosine phosphatase gamma during early development of the chick embryo. Mech. Dev. 98, 183–186.

    Article  CAS  PubMed  Google Scholar 

  • Harroch S., Furtado G. C., Brueck W., Rosenbluth J., Lafaille J., Chao M., et al. (2002) a critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions. Nat. Genet. 32, 411–414.

    Article  CAS  PubMed  Google Scholar 

  • Harroch S., Palmeri M., Rosenbluth J., Custer A., Okigaki M., Shrager P., et al. (2000) No obvious abnormality in mice deficient in recep tor protein tyrosine phosphatase beta. Mol. Cell. Biol. 20, 7706–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa S., Morioka M., Goto S., Korematsu K., Okamura A., Yano S., et al. (2000) Expression of neuron specific phosphatase, striatal enriched phosphatase (STEP) in reactive astrocytes after transient forebrain ischemia. Glia 29, 316–329.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N., Oohira A., and Miyata S. (2005) Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats Brain Res. 1050, 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Hirano M., and Goldman J. E. (1988) Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligo-dendrocytes from radial precursors. J. Neurosci. Res. 21, 155–167.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann K. M., Tonks N. K., and Barford D. (1997) The crystal structure of domain 1 of receptorprotein-tyrosine phosphatase mu. J. Biol. Chem. 272, 27,505–27,508.

    Article  CAS  Google Scholar 

  • Hopfl G., Gassmann M., and Desbaillets I. (2004) Differentiating embryonic stem cells into embryoid bodies. Methods Mol. Biol. 254, 79–98.

    PubMed  Google Scholar 

  • Huang H., Mahler-Araujo B. M., Sankila A., Chimelli L., Yonekawa Y., Kleihues P. et al. (2000) APC mutations in sporadic medulloblastomas. Am. J. Pathol. 156, 433–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova A., Agochiya M., Amoyel M., and Richardson W. D. (2004) Receptor tyrosine phosphatase zeta/beta in astrocyte progenitors in the developing chick spinal cord. Gene Expr. Patterns 4, 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Johnson K. G., and Holt C. E. (2000) Expression of CRYP-alpha, LAR, PTP-delta, and PTP-rho in the developing Xenopus visual system. Mech. Dev. 92, 291–294.

    Article  CAS  PubMed  Google Scholar 

  • Johnson K. G., and Van Vactor D. (2003) Receptor protein tyrosine phosphatases innervous system development. Physiol. Rev. 83, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen O. S., Brooksbank B. W., and Balazs R. (1990) Neuronal plasticity and astrocytic reaction in Downsyndrome and Alzheimer disease. J. Neurol. Sci. 98, 63–79.

    Article  CAS  PubMed  Google Scholar 

  • Kastury K., Ohta M., Lasota J., Moir D., Dorman T., LaForgia S., et al. (1996) Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation. Genomics 32, 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Kindy M. S. (1993) Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. J. Cereb. Blood Flow Metab. 13, 372–377.

    Article  CAS  PubMed  Google Scholar 

  • Koop E. A., Gebbink M. F., Sweeney T. E., Mathy M. J., Heijnen H. F., Spaan J. A., et al. (2005) Impaired flow-induced dilation in mesenteric resistance arteries from receptor protein tyrosine phosphatase-mu-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 288, H1218–1223.

    Article  CAS  PubMed  Google Scholar 

  • Kornblum H. I., Yanni D. S., Easterday M. C., and Seroogy K. B. (2000) Expression of the EGF receptor family members ErbB2, ErbB3, and ErbB4 in germinal zones of the developing brain and in neurosphere cultures containing CNS stem cells. Dev. Neurosci. 22, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Krueger N. X., and Saito H. (1992) A human transmembrane protein-tyrosine-phosphatase, PTPzeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc. Natl. Acad. Sci. U. S. A. 89, 7417–7421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaForgia S., Lasota J., Latif F. Boghosian-Sell L., Kastury K., Ohta M., et al. (1993) Detailed genetic and physical map of the 3p chromosome region surrounding the familial renal cell carcinoma chromosome translocation, t(3;8)(p14.2;q24.1). Cancer Res. 53, 3118–3124.

    CAS  PubMed  Google Scholar 

  • LaForgia S., Morse B., Levy J., Barnea G., Cannizzaro L. A., Li F., et al. (1991) Receptor protein-tyrosine phosphatase gamma is a candidate tumor suppressor gene at human chromosome region 3p21. Proc. Natl. Acad. Sci. U. S. A. 88, 5036–5040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamprianou S., Vacaresse N., Suzuki Y., Buxbaum J. D., Schlessinger J., et al. (2006) Receptor tyrosine phosphatase-gamma (RPTPγ) is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol. Cell Biol. in press.

  • Levison S. W., and Goldman J. E. (1993) Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Levy J. B., Canoll P. D., Silvennoinen O., Barnea G., Morse B., Honegger A. M. et al. (1993) The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J. Biol. Chem. 268, 10,573–10,581.

    CAS  Google Scholar 

  • Liu S., Sugimoto Y., Kulp S. K., Jiang J., Chang H. L., Park K. Y., et al. (2002) Estrogenic down-regulation of protein tyrosine phosphatase gamma (PTP gamma) in human breast is associated with estrogen receptor alpha. Anticancer Res. 22, 3917–3923.

    CAS  PubMed  Google Scholar 

  • Lorber B., Berry M., Hendriks W., den Hertog J., Pulido R., and Logan A. (2004) Stimulated regeneration of the crushed adult rat optic nerve correlates with attenuated expression of the protein tyrosine phosphatases RPTP alpha, STEP, and LAR. Mol. Cell. Neurosci. 27, 404–416.

    Article  CAS  PubMed  Google Scholar 

  • Lorente G., Nelson A., Mueller, S., Kuo J., Urfer R., Nikolich K., et al. (2005) Functional comparison of long and short splice forms of RPTP beta: implications for glioblastoma treatment. Neuro-oncology 7, 154–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubinski J., Hadaczek P., Podolski J., Toloczko A., Sikorski A., McCue P., et al. (1994) Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinomas. Cancer Res. 54, 3710–3713.

    CAS  PubMed  Google Scholar 

  • Maeda N., Hamanaka H., Oohira A., and Noda M. (1995) Purification, characterization and developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4 proteoglycan/phosphacan. Neuroscience 67, 23–35.

    Article  CAS  PubMed  Google Scholar 

  • Maeda N., Ichihara-Tanaka K., Kimura T., Kadomatsu K., Muramatsu T., and Noda M. (1999) A receptor-like protein-tyrosine phosphatase PTP zeta/RPTP beta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTP zeta. J. Biol. Chem. 274, 12,474–12,479.

    Article  CAS  Google Scholar 

  • Maeda N., Nishiwaki T., Shintani T., Hamanaka H., and Noda M. (1996) 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J. Biol. Chem. 271, 21,446–21,452.

    Article  CAS  Google Scholar 

  • Matthews R. J., Cahir E. D., and Thomas M. L. (1990) Identification of an additional member of the proteintyrosine-phosphatase family: evidence for alternative splicing in the tyrosine phosphatase domain. Proc. Natl. Acad. Sci. U. S. A. 87, 4444–4448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeon R. J., Jurynec M. J., and Buck C. R. (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10,778–10,788.

    CAS  Google Scholar 

  • Meathrel K., Adamek T., Batt J., Rotin D., and Doering L. C. (2002) Protein tyrosine phosphatase sigmadeficient mice show aberrant cytoarchitecture and structural abnormalities in the central nervous system. J. Neurosci. Res. 70, 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Meng K., Rodriguez-Pena A., Dimitrov T., Chen W., Yamin M., Noda M., et al. (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta, beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc. Natl. Acad. Sci. U. S. A. 97, 2603–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michailov G. V., Sereda M. W., Brinkmann B. G., Fischer T. M., Haug B., Birchmeier C., et al. (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703.

    Article  CAS  PubMed  Google Scholar 

  • Milev P. Fischer D., Haring M., Schulthess T., Margolis R. K., Chiquet-Ehrismann R., et al., (1997) The fibrinogen-like globe of tenascin-C mediates its interactions with neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta. J. Biol. Chem. 272, 15,501–15,509.

    Article  CAS  Google Scholar 

  • Milev P., Friedlander, D. R., Sakurai T., Karthikeyan L., Flad M., Margolis R. K., et al. (1994) Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J. Cell Biol. 127, 1703–1715.

    Article  CAS  PubMed  Google Scholar 

  • Milev P., Maurel P., Haring M., Margolis R. K., and Margolis R. U. (1996) TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-zeta/beta, and N-CAM. J. Biol. Chem. 271, 15,716–15,723.

    Article  CAS  Google Scholar 

  • Muir E. M., Adcock K. H., Morgenstern D. A., Clayton R., von Stillfried N., Rhodes K., et al. (2002) Matrix metalloproteases and their inhibitorsare produced by overlapping populations of activated astrocytes. Brain Res. Mol. Brain Res. 100, 103–117.

    Article  CAS  PubMed  Google Scholar 

  • Muja N., Lovas G., Romm E., Machleder D., Ranjan M., Gallo V., et al. (2004) Expression of a catalytically inactive transmembrane protein tyrosine phosphatase epsilon (tm-PTP epsilon) delays optic nerve meylination. Glia 48, 278–297.

    Article  PubMed  Google Scholar 

  • Muller S., Kunkel P., Lamszus K., Ulbricht U., Lorente G. A., Nelson A. M., et al. (2003) A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22, 6661–6668.

    Article  PubMed  CAS  Google Scholar 

  • Mustelin T. and Altman A. (1990) Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene 5, 809–813.

    CAS  PubMed  Google Scholar 

  • Mustelin T. and Hunter T. (2002) Meeting at mitosis: cell cycle-specific regulation of c-Src by RPTPalpha. Sci. STKE 115, PE3.

    Google Scholar 

  • Mustelin T., Coggeshall K. M., and Atlman A. (1989) rapid activation of the T-cell tyrosine kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. U. S. A. 86, 6302–6306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustelin T., Pessa-Morikawa T., Autero M., Gassmann M., Andersson L. C., Gahmberg C. G., et al. (1992) Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. Eur. J. Immunol. 22, 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  • Mustelin T., Vang T., and Bottini N. (2005) Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol. 5, 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara J., Seiwa C., Tan-Takeuchi K., Gotoh M., Kishihara K., Ogawa M., et al. (2005) Involvement of CD45 in central nervous system myelination. Neurosci. Lett. 379, 116–121.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M., Kishi M., Sakaki T., Hashimoto H., Nakase H., Shimada K., et al. (2003) Novel tumor suppressor loci on 6q22-23 in primary central nervous system lymphomas. Cancer Res. 63, 737–741.

    CAS  PubMed  Google Scholar 

  • Nam H. J., Poy F., Krueger N. X., Saito H., and Frederick C. A. (1999) Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449–457.

    Article  CAS  PubMed  Google Scholar 

  • Newman E. A. (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536–542.

    Article  CAS  PubMed  Google Scholar 

  • Niquet J., Jorquera I., Ben-Ari Y., and Represa A. (1993) NACM immunoreactivity on mossy fibers and reactive astrocytes in the hippocampus of epileptic rats. Brain Res. 626, 106–116.

    Article  CAS  PubMed  Google Scholar 

  • Niquet J., Jorquera I., Faissner A., Ben-Ari Y., and Represa A. (1995) Gliosis and axonal sprouting in the hippocampus of epileptic rats are associated with an increase of tenascin-C immunoreactivity. J. Neurocytol. 24, 611–624.

    Article  CAS  PubMed  Google Scholar 

  • Norman S. A., Golfinos J. G., and Scheck A. C. (1998) Expression of a receptor protein tyrosine phosphatase in human glial tumors. J. Neurooncol. 36, 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Ogata M., Sawada M., Fujino Y., and Hamaoka T. (1995) cDNA cloning and characterization of a novel receptor-type protein tyrosine phosphatase expressed predominantly in the brain. J. Biol. Chem. 270, 2337–2343.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki T., Matsumoto M., Kitagawa K., Mabuchi T., Mandai K., Matsushita K., et al. (1996) Delayed neuronal death in ischemic hippocampus involves stimulation of protein tyrosine phosphorylation. Am. J. Physiol. 271, C1085–1097.

    Article  CAS  PubMed  Google Scholar 

  • Ono K., Bansal R., Payne J., Rutishauser U., and Miller, R. H. (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121, 1743–1754.

    CAS  PubMed  Google Scholar 

  • Ostergaard H. L. and Trowbridge I. S. (1990) Coclustering CD45 with CD4 or CD8 alters the phosphorylation and kinase activity of p56lck. J. Exp. Med. 172, 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Pariser H., Perez-Pinera P., Ezquerra L., Herradon G., and Deuel T. F. (2005) Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta. Biochem. Biophys. Res. Commun. 335, 232–239.

    Article  CAS  PubMed  Google Scholar 

  • Peles E., Nativ M., Campbell P. L., Sakurai T., Martinez R., Lev S., et al. (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 82, 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Peretz A., Gil-Henn H., Sobko A., Shinder V., Attali B., and Elson A. (2000) Hypomyelination and increased activity of voltage-gated K(+) channels in mice lacking protein tyrosine phosphatase epsilon. EMBO J. 19, 4036–4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perosa S. R., Porcionatto M. A., Cukiert A., Martins J. R., Passeroti C. C., Amado D., et al. (2002) Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res. Bull. 58, 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Petrone A., and Sap J. (2000) Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting? J. Cell Sci. 113(Pt. 13), 2345–2354.

    CAS  PubMed  Google Scholar 

  • Petrone A., Battaglia F., Wang C., Dusa A., Su J., Zagzag D., et al. (2003) Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation. EMBO J. 22, 4121–4131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle N. P., Yu W. P., Howell M., Colyin J. S., Ornitz D. M., and Richardson W. D. (2003) Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130, 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Ranjan M. and Hudson L. D. (1996) Regulation of tyrosine phosphorylation and protein tyrosine phosphatases during oligodendrocyte differentiation. Mol. Cell. Neurosci. 7, 404–418.

    Article  CAS  PubMed  Google Scholar 

  • Richardson W. D. (1996) Glial Cell Development. BIOS Sci entific Publishers Limited. Oxford, U. K.

    Google Scholar 

  • Rowitch D. H. (2004) Glial specification in the vertebrate neural tube. nat. Rev. Neurosci. 5, 409–419.

    Article  CAS  PubMed  Google Scholar 

  • Sahin M. and Hockfield S. (1993) Protein tyrosine phosphatases expressed in the developing rat brain. J. Neurosci. 13, 4968–4978.

    CAS  PubMed  Google Scholar 

  • Salmeen A., Andersen J. N., Myers M. P., Meng T. C., Hinks J. A., Tonks N. K., et al. (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenylamide intermediate. Nature 423, 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Sap J., Jiang Y. P., Friedlander D., Grumet M., and Schlessinger J. (1994) Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol. Cell. Biol. 14, 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schechter R., Yen S. H., and Terry R. D. (1981) Fibrous Astrocytes in senile dementia of the Alzheimer type. J. Neuropathol. Exp. Neurol. 40, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Schumann G., Fiebich B. L., Menzel D., Hull M., Butcher R., Nielsen P., et al. (1998) Cytokine-induced transcription of protein-tyrosine-phosphatases in human astrocytoma cells. Brain Res. Mol. Brain Res. 62, 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Serra-Pages C., Kedersha N. L., Fazikas L., Medley Q., Debant A., and Streuli M. (1995) The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 14, 2827–2838.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen P., Canoll P. D., Sap J., and Musacchio J. M. (1999) Expression of a truncated receptor protein tyrosine phosphatase kappa in the brain of an adult transgenic mouse. Brain Res. 826, 157–171.

    Article  CAS  PubMed  Google Scholar 

  • Shintani T., Watanabe E., Maeda N., and Noda M. (1998) Neurons as well as astrocytes express proteoglycan-type protein tyrosine phosphatase zeta/RPTPbeta: analysis of mice in which the PTPzeta/RPTPbeta gene was replaced with the LacZ gene. Neurosci. Lett. 247, 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Shitara K., Yamada H., Watanabe K., Shimonaka M., and Yamaguchi Y. (1994) Brain-specific receptor-type protein-tyrosine phosphatase RPTP beta is a chondroitin sulfate proteoglycan in vivo. J. Biol. Chem. 269, 20,189–20,193.

    CAS  Google Scholar 

  • Shoshan Y., Nishiyama A., Chang A., Mork S., Barnett G. H., Cowell J. K., et al. (1999) Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc. Natl. Acad. Sci. U. S. A. 96, 10,361–10,366.

    Article  CAS  Google Scholar 

  • Snyder S. E., Li J., Schauwecker P. E., McNeill T. H., and Salton S. R. (1996) Comparison of RPTP zeta/beta, phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of RPTP zeta/beta and phosphacan mRNA following brain injury. Brain Res. Mol. Brain Res. 40, 79–96.

    Article  CAS  PubMed  Google Scholar 

  • Sommer L., Rao M., and Anderson D. J. (1997) RPTP delta and the novel protein tyrosine phosphatase RPTP psi are expressed in restricted regions of the developing central nervous system. Dev. Dyn. 208, 48–61.

    Article  CAS  PubMed  Google Scholar 

  • Stepanek L., Stoker A. W., Stoeckli E., and Bixby J. L. (2005) Receptortyrosine phosphatases guide vertebrate motor axons during development. J. Neurosci. 25, 3813–3823.

    Article  CAS  PubMed  Google Scholar 

  • Stoker A. and Dutta R. (1998) Protein tyrosine phosphatases and neural development. Bioessays 20, 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Stoker A. W. (2001) Receptor tyrosine phosphatases in axon growth and guidance. Curr. Opin. Neurobiol. 11, 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Stover D. R. and Walsh K. A. (1994) Protein-tyrosine phosphatase activity of CD45 is activated by sequential phosphorylation by two kinases. Mol. Cell. Biol. 14, 5523–5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streuli M. (1996) Protein tyrosine phosphatases in signaling. Curr. Opin. Cell Biol. 8, 182–188.

    Article  CAS  PubMed  Google Scholar 

  • Streuli M., Krueger N. X., Tsai A. Y., and Saito H. (1989) A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc. Natl. Acad. Sci. U. S. A. 86, 8698–8702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J., Yang L. T., and Sap J. (1996) Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences. J. Biol. Chem. 271, 28,086–28,096.

    Article  CAS  Google Scholar 

  • Suarez Pestana E., Tenev T., Gross S., Stoyanov B., Ogata M., and Bohmer F. D. (1999) The transmembrane protein tyrosine phosphatase RPTPsigma modulates signaling of the epidermal growth factor receptor in A431 cells. Oncogene 18, 4069–4079.

    Article  CAS  PubMed  Google Scholar 

  • Tagawa M., Shirasawa T., Yahagi Y., Tomoda T., Kuroyanagi H., Fujimura S., et al. (1997) Identification of a receptor-type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system. Biochem. J. 321(Pt. 3), 865–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi T., Miyake K., Tanonaka K., Okada M., Takagi N., Fujimori K., et al. (1993) Sustained changes in acetylcholine and amino acid contents of brain regions following microsphere embolism in rats. Jpn. J. Pharmacol. 62, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Thomaidou D., Coquillat D., Meintanis S., Noda M., Rougon G., and Matsas R. (2001) Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell migration: identification of protein tyrosine phosphatases zeta/beta as the putative F3 receptors on Schwann cells. J. Neurochem. 78, 767–778.

    Article  CAS  PubMed  Google Scholar 

  • Tonks N. K. (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670.

    Article  CAS  PubMed  Google Scholar 

  • Tracy S. van der Geer P., and Hunter T. (1995) The receptor-like protein-tyrosine phosphatase, RPTP alpha, is phosphorylated by protein kinase C on two serines close to the inner face of the plasma membrane. J. Biol. Chem. 270, 10,587–10,594.

    Article  CAS  Google Scholar 

  • Ulbricht U., Brockmann M. A., Aigner A., Eckerich C., Muller S., Fillbrandt R., et al. (2003) Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas. J. Neuropathol. Exp. Neurol. 62, 1265–1275.

    Article  CAS  PubMed  Google Scholar 

  • Valentine M. A., Widmer M. B., Ledbetter J. A., Pinault F., Voice R., Clark E. A., et al. (1991) Interleukin 2 stimulates serine phosphorylation of CD45 in CTLL-2.4 cells. Eur. J. Immunol. 21, 913–919.

    Article  CAS  PubMed  Google Scholar 

  • van den Maagdenberg A. M., Schepens J. T., Schepens M. T., Merkx G. F., Darroudi F., Wieringa B., et al. (1999) Assignmentl of the PTP-SL/PTPBR7 gene (Ptprr/PTPRR) to mouse chromosome region 8A2 by in situ hybridization. Cytogenet. Cell Genet. 84, 243,244.

    Article  PubMed  Google Scholar 

  • van Inzen W. G., Peppelenbosch M. P., van den Brand M. W., Tertoolen L. G., and de Laat S. (1996) The role of receptor protein tyrosine phosphatase alpha in neuronal differentiation of embryonic stem cells. Brain Res. Dev. Brain Res. 91, 304–307.

    Article  PubMed  Google Scholar 

  • van Niekerk C. C. and Poels L. G. (1999) Reduced expression of protein tyrosine phosphatase gamma in lung and ovarian tumors. Cancer Lett. 137, 61–73.

    Article  PubMed  Google Scholar 

  • Wallace M. J., Batt J., Fladd C. A., Henderson J. T., Skarnes W., and Rotin D. (1999) Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat. Genet. 21, 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Wallace M. J., Fladd C., Batt J., and Rotin D. (1998) The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol. Cell. Biol. 18, 2608–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton K. M., Martell K. J., Kwak S. P., Dixon J. E., and Largent B. L. (1993) Anovel receptor-type protein tyrosine phosphatase is expressed during neurogenesis in the olfactory neuroepithelium. Neuron 11, 387–400.

    Article  CAS  PubMed  Google Scholar 

  • Walzel H., Schulz U., Neels P., and Brock J. (1999) Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45. Immunol. Lett. 67, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z., Shen D., Parsons D. W., Bardelli A., Sager J., Szabo S., et al. (2004) Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 304, 1164–1166.

    Article  CAS  PubMed  Google Scholar 

  • Wills Z., Bateman J., Korey C. A., Comer A., and Van Vactor D. (1999) The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 22, 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z. C., Bartsch U., Margolis R. K., Rougon G., Montag D., and Schachner M. (1997) Isolution of a tenascin-R binding protein from mouse brain membranes A phosphacan-related chondroitin sulfate proteoglycan. J. Biol. Chem. 272, 32,092–32,101.

    Article  CAS  Google Scholar 

  • Yan H., Grossman A., Wang H., D'Eustachio P., Mossie K., Musacchio J. M., et al. (1993) Anovel receptor tyrosine phosphatase-sigma that is highly expressed in the nervous system. J. Biol. Chem. 268, 24,880–24,886.

    CAS  Google Scholar 

  • Yang J., Niu T., Zhang A., Mishra A. K., Zhao Z. J., and Zhou G. W. (2001) Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. J. Cell. Biochem. 84, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Yang T., Bernabeu R., Xie Y., Zhang J. S., Massa S. M., Rempel H. C., et al. (2003) Leukocyte antigen-related protein tyrosine phosphatase receptor: a small ectodomain isoform functions as a homophilic ligand and promotes neurite outgrowth. J. Neurosci. 23, 3353–3363.

    CAS  PubMed  Google Scholar 

  • Yang T., Yin W., Derevyanny V. D., Moore L. A., and Longo F. M. (2005) Identification of an ectodomain within the LAR protein tyrosine phosphatase receptor that binds homophilically and activates signalling pathways promoting, neurite outgrowth. Eur. J. Neurosci. 22, 2159–2170.

    Article  PubMed  Google Scholar 

  • Zheng J., Kulp S. K., Zhang Y., Sugimoto Y., Dayton M. A., Govindan M. V., et al. (2000a) 17 beta-estradiol-regulated expression of protein tyrosine phosphatase gamma gene in cultured human normal breast and breast cancer cells. Anticancer Res. 20, 11–19.

    CAS  PubMed  Google Scholar 

  • Zheng X. M. and Shalloway D. (2001) Two mechanisms activate PTPalpha during mitosis. EMBO J. 20, 6037–6049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X. M., Resnick R. J., and Shalloway D. (2000b) A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J. 19, 964–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Harroch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamprianou, S., Harroch, S. Receptor protein tyrosine phosphatase from stem cells to mature glial cells of the central nervous system. J Mol Neurosci 29, 241–255 (2006). https://doi.org/10.1385/JMN:29:3:241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:3:241

Index Entries

Navigation