Skip to main content
Log in

CoREST-like complexes regulate chromatin modification and neuronal gene expression

  • Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The mammalian CoREST ([co]repressor for element-1-silencing transcription factor) complex was first identified associated with the repressor for element-1 silencing transcription factor (REST)/neuronal restrictive silencing factor. The CoREST complex is a chromatin-modifying corepressor complex that acts with REST to regulate neuronal gene expression and neuronal stem cell fate. Components of a CoREST-like complex have been identified recently in Xenopus laevis, Caenorhabditis elegans, and Drosophila melanogaster. Like the mammalian complex, the Drosophila complex is required to regulate neuronal gene expression, whereas the C. elegans homologs regulate the expression of the hop-1 presenilin gene, suggesting an ancient conserved function of CoREST complexes in regulating neuronal gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasland R., Gibson T.J., and Stewart A. F. (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59.

    Article  CAS  PubMed  Google Scholar 

  • Andres M. E., Burger C., Peral-Rubio M. J., Battaglioli E., Anderson M. E., Grimes J., et al. (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl. Acad. Sci. U. S. A. 96, 9873–9878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravind L. and Iyer L. M. (2002) The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, research 00039.1-00039.7.

  • Ballas N., Battaglioli E., Atouf F., Andres M.E., Chenoweth J., Anderson M. E., et al. (2001) Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365.

    Article  CAS  PubMed  Google Scholar 

  • Ballas N., Grunseich C., Lu D. D., Speh J. C., and Mandel G. (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657.

    Article  CAS  PubMed  Google Scholar 

  • Battaglioli E., Andres M. E., Rose D. W., Chenoweth, J. G., Rosenfeld M. G., Anderson M. E., and Mandel G. (2002) REST repression of neuronal genes requires components of the hSWI.SNF complex. J. Biol. Chem. 277, 41,038–41,045.

    Article  CAS  Google Scholar 

  • Belyaev N. D., Wood I. C., Bruce A. W., Street M., Trinh J. B., and Buckley N. J. (2004) Distinct RE-1 silencing transcription factor-containing complexes interact with differen target genes. J. Biol. Chem. 279, 556–561.

    Article  CAS  PubMed  Google Scholar 

  • Bessis A., Champtiaux N., Chatelin, L., and Changeux J. P. (1997) The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc. Natl. Acad. Sci. U. S. A. 94, 5906–5911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer L. A., Latek R. R., and Peterson C. L. (2004) The SANT domain: a unique histone-tail-binding module? Nat. Rev. Mol. Cell. Biol. 5, 158–163.

    Article  CAS  PubMed  Google Scholar 

  • Bruce A. W., Donaldson I. J., Wood I. C., Yerbury S. A., Sadowski M. I., Chapman M., et al. (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc. Natl. Acad. Sci. U.S.A. 101, 10,458–10,463.

    Article  CAS  Google Scholar 

  • Brunkan A. L. and Goate A. M. (2005) Presenilin function and gamma-secretase activity. J. Neurochem. 93, 769–792.

    Article  CAS  PubMed  Google Scholar 

  • Calderone A., Jover T., Noh K. M., Tanaka H., Yokota H., Lin Y., et al. (2003) Ischemic insults derepress the gene silencer REST in neurons destined to die. J. Neurosci. 23, 2112–2121.

    CAS  PubMed  Google Scholar 

  • Chen Z. F., Paquette A. J., and Anderson D. J. (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat. Genet. 20, 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Chong, J. A., Tapia-Ramirez J., Kim S., Toledo-Aral J. J., Zheng Y., Boutros M. C., et al. (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957.

    Article  CAS  PubMed  Google Scholar 

  • Collins C., Rommens J. M., Kowbel D, Godfrey T, Tanner M., Hwang S. I., et al. (1998) Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc. Natl. Acad. Sci. U. S. A. 95, 8703–8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulson J. M. (2005) Transcriptional regulation: cancer, neurons and the REST, Curr. Biol. 15, R665-R668.

    Article  CAS  PubMed  Google Scholar 

  • Dallman J. E., Allopenna, J., Bassett A., Travers A., and Mandel G. (2004) A conserved role but different partners for the transcriptional corepressor CoREST in fly and mammaliannervous system formation. J. Neurosci. 24, 7186–7193.

    Article  CAS  PubMed  Google Scholar 

  • de la Calle-Mustienes E., Modolell J., and Gomez-Skarmeta J. L. (2002) The Xiro-repressed gene CoREST is expressed in Xenopusneural territories. Mech. Dev. 110, 209–211.

    Article  PubMed  Google Scholar 

  • Eimer S., Lakowski B., Donhauser R., and Baumeister R. (2002) Loss of spr-5 bypasses the requirement for the C.elegans presenilin sel-12 by derepressing hop-1. EMBO J. 21, 5787–5796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forneris F., Binda C., Vanoni M. A., Battaglioli E., and Mattevi A. (2005a) Human histone demethylase LSD1 reads the histone code. J. Biol. Chem. 280, 41,360–41,365.

    Article  CAS  Google Scholar 

  • Forneris F., Binda C., Vanoni M. A., Mattevi A., and Battaglioli E. (2005b) Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207.

    Article  CAS  PubMed  Google Scholar 

  • Gabellini D., Green M. R., and Tupler R. (2004) When enough is enough: genetic diseases associated with transcriptional derepression. Curr. Opin. Genet. Dev. 14, 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Gabellini D., Tupler R., and Green M. R. (2003) Transcriptional derepression as a cause of genetic diseases. Curr. Opin. Genet. Dev. 13, 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Grace Goll M. and Bestor T. H. (2005) Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514.

    Article  Google Scholar 

  • Grimes J. A., Nielsen S. J., Battaglioli E., Miska E. A., Speh J. C., Berry D. L., et al. (2000) The co-repressor mSin3A is a functional component of the REST-CoREST repsressor complex. J. Biol. Chem. 275, 9461–9467.

    Article  CAS  PubMed  Google Scholar 

  • Gu H., Liang Y., Mandel G., and Roizman B. (2005) Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc. Natl. Acad. Sci. U. S. A. 102, 7571–7576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M., Bier E., Jan L. Y., and Jan Y. N. (1995) tramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the Drosophila PNS. Neuron 14, 913–925.

    Article  CAS  PubMed  Google Scholar 

  • Hakimi M. A., Bochar D. A., Chenoweth J., Lane W. S., Mandel G., and Shiekhattar R. (2002a) A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl. Acad. Sci. U. S. A. 99, 7420–7425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakimi M. A., Dong Y., Lane W. S., Speicher D. W., and Shiekhattar R. (2002b) A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J. Biol. Chem. 278, 7234–7239.

    Article  PubMed  Google Scholar 

  • Harrison S. D. and Travers A. A. (1990) The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novelembryonic expression pattern. EMBO J. 9, 207–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He H. and Lehming N. (2003) Global effects of histone modifications, Brief Funct. Genomic Proteomics 2, 234–243.

    Article  CAS  Google Scholar 

  • He Y., Michaels S. D., and Amasino R. M. (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751–1754.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y., Myers S. J., and Dingledine R. (1999) Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase toneuronal genes. Nat. Neurosci. 2, 867–872.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey G. W., Wang Y., Russanova V. R., Hirai T., Qin J., Nakatani Y., and Howard B. H. (2001) Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276, 6817–6824.

    Article  CAS  PubMed  Google Scholar 

  • Iwase S., Januma A., Miyamoto K., Shono N., Honda A., Yanagisawa J., and Baba T. (2004) Characterization of BHC80 in BRAF-HDA C complex, involved in neuron-specific gene repression. Biochem. Biophys. Res. Commun. 322, 601–608.

    Article  CAS  PubMed  Google Scholar 

  • Jarriault S. and Greenwald I. (2002) Suppressors of the egg-laying defective phenotype of sel-12 presenilin mutants implicate the CoREST corepressor complex in LIN-12/Notch signaling in C. elegans. Genes Dev. 16, 2713–2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jepsen K. and Rosenfeld M. G. (2002) Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115, 689–698.

    CAS  PubMed  Google Scholar 

  • Kutney S. N., Hong R., Macfarlan T., and Chakravarti D. (2004) A signaling role of histone binding proteins and INHAT subunits pp32 and Set/TAF-Ibβ in integrating chromatin hypoacetylation and transcriptional repression. J. Biol. Chem. 279, 30,850–30,855.

    Article  CAS  Google Scholar 

  • Kuwabara T., Hsieh J., Nakashima K., Taira K., and Gage F. H. (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116, 779–793.

    Article  CAS  PubMed  Google Scholar 

  • Lachner M. and Jenuwein T. (2002) The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Lakowski B., Eimer S., Gobel C., Bottcher A., Wagler B., and Baumeister R. (2003) Two suppressors of sel-12 encode C2H2 zinc-finger proteins that regulate presenilin transcription in Caenorhabditis elegans. Development 130, 2117–2128.

    Article  CAS  PubMed  Google Scholar 

  • Lee M. G., Wynder C., Cooch N., and Shiekhattar R. (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435.

    Article  CAS  PubMed  Google Scholar 

  • Levitan D. and Greenwald I. (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354.

    Article  CAS  PubMed  Google Scholar 

  • Li X. and Greenwald I. (1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl. Acad. Sci. U. S. A. 94, 12,204–12,209.

    Article  CAS  Google Scholar 

  • Lunyak V. V., Burgess R., Prefontaine G. G., Nelson C., Sze S. H., Chenoweth J., et al. (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes, Science 298, 1747–1752.

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein L. Y., Kinev A. V., Chan G. K., Bochar D. A., Beniya H., Epstein J. A., et al. (2001) A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104, 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Metzger E., Wissmann M., Yin N., Muller J. M., Schneider R., Peters A. H., et al. (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Nishihara S., Tsuda L., and Ogura T. (2003) The canonical Wnt pathway directly regulates NRSF/REST expression in chick spinal cord. Biochem. Biophys. Res. Commun. 311, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Nonet G. H., Stampfer M. R., Chin K., Gray J. W., Collins C. C., and Yaswen P. (2001) The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res. 61, 1250–1254.

    CAS  PubMed  Google Scholar 

  • Palm K., Belluardo N., Metsis M., and Timmusk T. (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J. Neurosci. 18, 1280–1296.

    CAS  PubMed  Google Scholar 

  • Read D. and Manley J. L. (1992) Alternatively spliced transcripts of the Drosophila tramtrack gene encode zinc finger proteins with distinct DNA binding specificities. EMBO J. 11, 1035–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez P., Munroe D., Prawitt D., Chu L. L., Bric E., Kim J., et al. (1997) Functional characterization of humannucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone. Genomics 44, 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Roopra A., Qazi R., Schoenike B., Daley T. J., and Morrison J. F. (2004) Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Roopra A., Sharling L., Wood I. C., Briggs T., Bachfischer U., Paquette A. J., and Buckley N. J. (2000) Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol. Cell. Biol. 20, 2147–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider R., Bannister A. J., Weise C., and Kouzarides T. (2004) Direct binding of INHAT to H3 tails disrupted by modifications. J. Biol. Chem. 279, 23,859–23,862.

    Article  CAS  Google Scholar 

  • Schoenherr C. J. and Anderson D. J. (1995) The neuronrestrictive silencer factor (NRSF): a coordinate repressor of multipleneuron-specific genes. Science 267, 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr C. J. Paquette A. J., and Anderson D. J. (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl. Acad. Sci. U. S. A. 93, 9881–9886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo S. B., McNamara P., Heo S., Turner A., Lane W. S., and Chakravarti D. (2001) Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y., Lan F., Matson C., Mulligan P., Whetstine J. R., Cole P. A., and Casero R. A. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y. J., Matson C., Lan F., Iwase S., Baba T., and Shi Y. (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864.

    Article  CAS  PubMed  Google Scholar 

  • Su X., Kameoka S., Lentz S., and Majumder S. (2004) Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol. Cell. Biol. 24, 8018–8025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-Ramirez J., Eggen B. J., Peral-Rubio M. J., Toledo-Aral J. J., and Mandel G. (1997) A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc. Natl. Acad. Sci. U. S. A. 94, 1177–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tontsch S., Zach O., and Bauer H. C. (2001) Identification and localization of M-CoREST (1A13), a mouse homologue of the human transcriptional co-repressor CoREST, in the developing mouse CNS. Mech. Dev. 108, 165–169.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H., Mizutani T., Haraguchi T., Yamamichi N., Minoguchi S., Yamamichi-Nishina M., et al. (2005) SWI/SNF complexis essential for NRSF-mediated suppression of neuronal genes in human non small cell lung carcinoma cell lines. Oncogene 25, 470–479.

    Article  Google Scholar 

  • Watanabe Y., Kameoka S., Gopalakrishnan V., Aldape K. D., Pan Z. Z., Lang F. F., and Majumder S. (2004) Conversion of myoblasts to physiologically active neuronal phenotype. Genes Dev. 18, 889–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen C., Levitan D., Li X., and Greenwald I. (2000) spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc. Natl. Acad. Sci. U. S. A. 97, 14,524–14,529.

    Article  CAS  Google Scholar 

  • Westlund B., Parry D., Clover R., Basson M., and Johnson C. D. (1999) Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc. Natl. Acad. Sci. U. S. A. 96, 2497–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynder C., Hakimi M. A., Epstein J. A., Shilatifard A., and Shiekhattar R. (2005) Recruitment of MLL by HMG-domain protein iBRAF promotes neural differentiation. Nat. Cell Biol. 7, 1113–1117.

    Article  CAS  PubMed  Google Scholar 

  • Yamagoe S., Kanno T., Kanno Y., Sasaki S., Siegel R. M., Lenardo M. J., et al. (2003) Interaction of histone acetylases and deacetylases in vivo. Mol. Cell. Biol. 23, 1025–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo M., Lee S. K., Lee B., Ruiz E. C., Pfaff S. L., and Gill G. N. (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307, 596–600.

    Article  CAS  PubMed  Google Scholar 

  • You A., Tong J. K., Grozinger C. M., and Schreiber S. L. (2001) CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc. Natl. Acad. Sci. U. S. A. 98, 1454–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccato C., Tartari M., Crotti A., Goffredo D., Valenza M., Conti L., et al. (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 35, 76–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lakowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakowski, B., Roelens, I. & Jacob, S. CoREST-like complexes regulate chromatin modification and neuronal gene expression. J Mol Neurosci 29, 227–239 (2006). https://doi.org/10.1385/JMN:29:3:227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:3:227

Index Entries

Navigation