Skip to main content
Log in

Motoneuron injury and repair

New perspectives on gonadal steroids as neurotherapeutics

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In this review, we will summarize recent work from our laboratory on the role of gonadal steroids as neuroprotective agents in motoneuron viability following cell stress. Three motoneuron models will be discussed: developing axotomized hamster facial motoneurons (FMNs); adult axotomized mouse FMNs; and immortalized, cultured mouse spinal motoneurons subjected to heat shock. New work on two relevant motoneuron proteins, the survival of motor neuron protein, and neuritinor candidate plasticity-related gene 15, indicates differential steroid regulation of these two proteins after axotomy. The concept of gonadal steroids as cellular stress correction factors and the implications of this for acute neurological injury situations will be presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson K. and Talbot K. (2003) Spinal muscular atrophies reveal motor neuron vulnerability to defects in ribonucleoprotein handling. Curr. Opin. Neurol. 16, 595–599.

    PubMed  CAS  Google Scholar 

  • Azcoitia I., Sierra A., and Garcia-Segura L. M. (1999) Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J. Neurosci. Res. 58, 815–822.

    PubMed  CAS  Google Scholar 

  • Baba N., Koji T., Itoh M., and Mizuno A. (1999) Reciprocal changes in the expression of Bcl-2 and Bax in hypoglossal nucleus after axotomy in adult rats: possible involvement in the induction of neuronal cell death. Brain Res. 827, 122–129

    PubMed  CAS  Google Scholar 

  • Baron-Delage S. Echaniz-Laguna A., Melki J., and Beretta L. (2000) Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol. Med. 6, 957–968.

    PubMed  CAS  Google Scholar 

  • Behl C. (2002) Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 3, 433–442.

    PubMed  CAS  Google Scholar 

  • Benten W. P., Guo Z., Krucken J., and Wunderlich F. (2004) Rapid effects of androgens in macrophages. Steroids 69, 585–590.

    PubMed  CAS  Google Scholar 

  • Cantallops I., Haas K., and Cline H. T. (2000) Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat. Neurosci. 3, 1004–1011.

    PubMed  CAS  Google Scholar 

  • Castoria G., Lombardi M., Barone M. V., Bilancio A., Di Domenico M. DeFalco A., et al. (2004) Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids 69, 517–522.

    PubMed  CAS  Google Scholar 

  • Chambraud B., Berry M., Redeuilh G., Chambon P., and Baulieu E. E. (1990) Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes. J. Biol. Chem. 265, 20686–20691.

    PubMed  CAS  Google Scholar 

  • Clancy A. N., Whitman C., Michael R. P., and Albers H. E. (1994) Distribution of androgen receptor-like immunoreactivity in the brains of intact and castrated male hamsters. Brain Res. Bull. 33, 325–332.

    PubMed  CAS  Google Scholar 

  • Claus P., Bruns A. F., and Grothe C. (2004) Fibroblast growth factor-2 23 is binding directly to the survival of motoneuron protein and is associated with small nuclear RNAs. Biochem. J. 384, 559–565.

    PubMed  CAS  Google Scholar 

  • Corriveau R. A., Shatz C. J., and Nedivi E. (1999) Dynamic regulation of cpg 15 during activity-dependent synaptic development in the mammalian visual system. J. Neurosci. 19, 7999–8008.

    PubMed  CAS  Google Scholar 

  • Cragg B. G. (1970) What is the signal for chromatolysis? Brain Res. 23, 1–21.

    PubMed  CAS  Google Scholar 

  • Dhandapani K. M., Hadman M., De Sevilla L., Wade M. F., Mahesh V. B., and Brann D. W. (2003) Astrocyte protection of neurons: role of transforming growth factorbeta signaling via a c-Jun-AP-1 protective pathway. J. Biol. Chem. 278, 43,329–43,339.

    CAS  Google Scholar 

  • Di Giovanni S., Faden A. I., Yakovlev A., Duke-Cohan J. S., Finn T., Thouin M. et al. (2005) Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J. 19, 153–154.

    PubMed  Google Scholar 

  • Dong, L., Wang W., Wang F., Stoner M., Reed J. C., Harigai M., et al. (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J. Biol. Chem. 274, 32099–32107.

    PubMed  CAS  Google Scholar 

  • Drengler S. M., Handa R. J., and Jones K. J. (1996a) Sex differences in androgen receptor mRNA levels and regulation in hamster facial motoneurons. Brain Res. Mol. Brain Res. 35, 131–138.

    PubMed  CAS  Google Scholar 

  • Drengler S. M., Handa R. J., and Jones K. J. (1996b) Regulation of and rogen receptor mRNA expression in hamster facial motoneurons: differential effects of non-aromatizable and aromatizable androgens. Brain Res. Mol. Brain Res. 41, 8–15.

    PubMed  CAS  Google Scholar 

  • Fan L. and Simard L. R. (2002) Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum. Mol. Genet. 11, 1605–1614.

    PubMed  CAS  Google Scholar 

  • Fargo K. N. and Sengelaub D. R. (2004) Testosterone manipulation protects motoneurons from dendritic atrophy after contralateral motoneuron depletion. J. Comp. Neurol. 469, 96–106.

    PubMed  CAS  Google Scholar 

  • Forger N. G., Wagner C. K., Contois M., Bengston L., and MacLennan A. J. (1998) Ciliary neurotrophic factor receptor alpha in spinal motoneurons is regulated by gonadal hormones. J. Neurosci. 18, 8720–8729.

    PubMed  CAS  Google Scholar 

  • Fujino T., Lee W. C., and Nedivi E. (2003) Regulation of cpg 15 by signaling pathways that mediate synaptic plasticity. Mol. Cell. Neurosci. 24, 538–554.

    PubMed  CAS  Google Scholar 

  • Garcia-Ovejero D., Veiga S., Garcia-Segura L. M., and Doncarlos L. L. (2002) Glia expression of estrogen and androgen receptors after rat brain injury. J. Comp. Neurol. 450, 256–271.

    PubMed  CAS  Google Scholar 

  • Garcia-Segura L. M., Azcoitia I., and DonCarlos L. L. (2001) Neuroprotection by estradiol. Prog. Neurobiol. 63, 29–60.

    PubMed  CAS  Google Scholar 

  • Grafstein B. (1975) The nerve cell body response to axotomy. Exp. Neurol. 48, 32–51.

    PubMed  CAS  Google Scholar 

  • Gubitz A. K., Feng W., and Dreyfuss G. (2004) The SMN complex. Exp. Cell. Res. 296, 51–56.

    PubMed  CAS  Google Scholar 

  • Guerra B., Diaz M., Alonso R., and Marin R. (2004) Plasma membrane oestrogen receptor mediates neuroprotection against beta-amyloid toxicity through activation of Raf-1/MEK/ERK cascade in septal-derived cholinergic SN56 cells. J. Neurochem. 91, 99–109.

    PubMed  CAS  Google Scholar 

  • Han P. J., Shukla S., Subramanian P. S., and Hoffman P. N. (2004) Cyclic AMP elevates tubulin expression without increasing intrinsic axon growth capacity. Exp. Neurol. 189, 293–302.

    PubMed  CAS  Google Scholar 

  • Hua Y. and Zhou J. (2004) Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress. Biochem. Biophys. Res. Commun. 314, 268–276.

    PubMed  CAS  Google Scholar 

  • Huppenbauer C. B., Tanzer L., DonCarlos L. L., and Jones K. J. (2005). Gonadal steoid attenuation of developing hamster facial motoneuron loss by axotomy: equal efficacy of testosterone, dihydrotestosterone, and 17-beta estradiol. J. Neurosci. 25, 4004–4013.

    PubMed  CAS  Google Scholar 

  • Jensen E. V., Greene G. L., Closs L. E., DeSombre E. R., and Nadji M. (1982) Receptors reconsidered: a 20-year perspective. Recent Prog. Horm. Res. 38, 1–40.

    PubMed  CAS  Google Scholar 

  • Jones K. J. (1993) Gonadal steroids and neuronal regeneration. A therapeutic role. Adv. Neurol. 59, 227–240.

    PubMed  CAS  Google Scholar 

  • Jones K. J. (1999) Steroid hormones and neurotrophisms: relationship to nerve injury. Metab. Brain Dis. 3, 1–18.

    Google Scholar 

  • Jones K. J., Alexander T. D., Brown T. J., and Tanzer L. (2000) Gonadal steroid enhancement of facial nerve regeneration: role of heat shock protein 70. J. Neurocytol. 29, 341–349

    PubMed  CAS  Google Scholar 

  • Jones K. J. and Lavelle A. (1986) Differential effects of axotomy on immature and mature hamster facial neurons: a time course study of initial nucleolar and nuclear changes. J. Neurocytol. 15, 197–206.

    PubMed  CAS  Google Scholar 

  • Jones K. J. and Oblinger M. M. (1994) Androgenic regulation of tubulin gene expression in axotomized hamster facial motoneurons. J. Neurosci. 14, 3620–3627.

    PubMed  CAS  Google Scholar 

  • Jones K. J., Brown T. J., and Damaser M. (2001) Neuroprotective effects of gonadal steroids on regenerating peripheral motoneurons. Brain Res. Brain Res. Rev. 37, 372–382.

    PubMed  CAS  Google Scholar 

  • Jones K. J., Durica T. E., and Jacob S. K. (1997) Gonadal steroid preservation of central synaptic input to hamster facial motoneurons following peripheral axotomy. J. Neurocytol. 26, 257–266.

    PubMed  CAS  Google Scholar 

  • Jung-Testas I., Renoir M., Bugnard H., Greene G. L., and Baulieu E. E. (1992) Demonstration of steroid hormone receptors and steroid action in primary cultures of rat glial cells. J. Steroid Biochem. Mol. Biol. 41, 621–631.

    PubMed  CAS  Google Scholar 

  • Kerr D. A., Nery J. P., Traystman R. J., Chau B. N., and Hardwick J. M. (2000) Survival motor neuron protein modulates neuron-specific apoptosis. Proc. Natl. Acad. Sci. U. S. A. 97, 13312–13317.

    PubMed  CAS  Google Scholar 

  • Kinderman N. B. and Jones K. J. (1993) Testosterone enhancement of the nerve cell body response to injury: evidence using in situ hybridization and ribosomal DNA probes. J. Neurosci. 13, 1523–1532.

    PubMed  CAS  Google Scholar 

  • Kinderman N. B., Harrington C. A., Drengler S. M., and Jones K. J. (1998) Ribbsomal RNA transcriptional activation and processing in hamster facial motoneurons: effects of axotomy with or without exposure to testosterone. J. Comp. Neurol. 401, 205–216.

    PubMed  CAS  Google Scholar 

  • Kujawa K. A., and Jones K. J. (1990) Testosterone-induced acceleration of recovery from facial paralysis in male hamsters: temporal requirements of hormone exposure. Physiol. Behav. 48, 765–768.

    PubMed  CAS  Google Scholar 

  • Kujawa K. A., Emeric E., and Jones K. J. (1991) Testosterone differentially regulates the regenerative properties of injured hamster facial motoneurons. J. Neurosci. 11, 3898–3906.

    PubMed  CAS  Google Scholar 

  • Kujawa K. A., Jocob J. M., and Jones K. J. (1993) Testosterone regulation of the regenerative properties of injured rat sciatic motor neurons. J. Neurosci. Res. 35, 268–273.

    PubMed  CAS  Google Scholar 

  • Kujawa K. A., Kinderman N. B., and Jones K. J. (1989) Testosterone-induced acceleration of recovery from facial paralysis following crush axotomy of the facial nerve in male hamsters. Exp. Neurol. 105, 80–85.

    PubMed  CAS  Google Scholar 

  • Kujawa K. A., Tanzer L., and Jones K. J. (1995) Inhibition of the accelerative effects of testosterone on hamster facial nerve regeneration by the antiandrogen flutamide. Exp. Neurol. 133, 138–143.

    PubMed  CAS  Google Scholar 

  • LaBella V., Cisterni C., Salaun D., and Pettmann B. (1998) Survival motor neuron (SMN) protein in rat is expressed as different molecular forms and is developmentally regulated. Eur. J. Neurosci. 10, 2913–2923.

    CAS  Google Scholar 

  • Langub M. C. Jr. and Watson R. E. Jr. (1992) Estrogen receptor-immunoreactiveglia, endothelia, and ependyma in guinea pig preoptic area and median eminence: electron microscopy. Endocrinology 130, 364–372.

    PubMed  CAS  Google Scholar 

  • La Velle A. and La Velle F., eds. (1984) Neuronal Reaction to Injury During Development, Academic Press, New York.

    Google Scholar 

  • Lee W. C. and Nedivi E. (2002) Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg 15-like genes. J. Neurosci. 22, 1807–1815.

    PubMed  CAS  Google Scholar 

  • Lefebvre S., Burglen L., Reboullet S., Clermont O., Burlet P., Viollet L., et al. (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165.

    PubMed  CAS  Google Scholar 

  • Lefebvre S., Burlet P., Liu Q., Bertrandy S., Clermont O., Munnich A., et al. (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16, 265–269.

    PubMed  CAS  Google Scholar 

  • Lieberman A. R. (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol. 14, 49–124.

    PubMed  CAS  Google Scholar 

  • Liu Q. and Dreyfuss G. (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565.

    PubMed  CAS  Google Scholar 

  • Lu M. L., Schneider M. C., Zheng Y., Zhang X., and Richie J. P. (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J. Biol. Chem. 276, 13442–13451.

    PubMed  CAS  Google Scholar 

  • MacLusky N. J., Chalmers-Redman R., Kay G., Ju W., Nethrapalli I. S., and Tatton W. G. (2003) Ovarian steroids reduce apoptosis induced by trophic insufficiency in nerve growth factor-differentiated PC12 cells and axotomized rat facial motoneurons. Neuroscience 118, 741–754.

    PubMed  CAS  Google Scholar 

  • Majumder S., Varadharaj S., Ghoshal K., Monani U., Burghes A. H., and Jacob S. T. (2004) Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene. J. Biol. Chem. 279, 14803–14811.

    PubMed  CAS  Google Scholar 

  • Marron T. U., Guerini V., Rusmini P., Sau D., Brevini T. A., Martini L., and Poletti A. (2005) Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J. Neurochem. 92, 10–20.

    PubMed  CAS  Google Scholar 

  • McWhorter M. L., Monani U. R., Burghes A. H., and Beattie C. E. (2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motoraxon out growth and path finding. J. Cell. Biol. 162, 919–931.

    PubMed  CAS  Google Scholar 

  • Meister G., Eggert C., and Fischer U. (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol. 12, 472–478.

    PubMed  CAS  Google Scholar 

  • Mitra S. W., Hoskin E., Yudkovitz J., Pear L., Wilkinson H. A., Hayashi S., et al. (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144, 2055–2067.

    PubMed  CAS  Google Scholar 

  • Monani U. R., Sendtner M., Coovert D. D., Parsons D. W., Andreassi C., Le T. T., et al. (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339.

    PubMed  CAS  Google Scholar 

  • Mor G., Nilsen J., Horvath T., Bechmann I., Brown S., Garcia-Segura L. M., and Naftolin F. (1999) Estrogen and microglia: a regulatory system that affects the brain. J. Neurobiol. 40, 484–496.

    PubMed  CAS  Google Scholar 

  • Most S. P. (2004) Pacial nerve recovery in bcl2 overex-pression mice after crush injury. Arch. Facial Plast. Surg. 6, 82–87.

    PubMed  Google Scholar 

  • Murashov A. K., Islamov R. R., McMurray R. J., Pak E. S., and Weidner D. A. (2004) Estrogen increases retrograde labeling of motoneurons: evidence of a nongenomic mechanism. Am. J. Physiol. Cell Physiol. 287, C320–326.

    PubMed  CAS  Google Scholar 

  • Naeve G. S., Ramakrishnan M., Kramer R., Hevroni D., Citri Y., and Theill L. E. (1997) Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc. Natl. Acad. Sci. U. S. A. 94, 2648–2653.

    PubMed  CAS  Google Scholar 

  • Naghdi N. and Asadollahi A. (2004) Genomic and nongenomic effects of intrahippocampal microinjection of testosterone on long-term memory in male adult rats. Behav. Brain Res. 153, 1–6.

    PubMed  CAS  Google Scholar 

  • Navascues J., Berciano M. T., Tucker K. E., Lafarga M., and Matera A. G. (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112, 398–409.

    PubMed  CAS  Google Scholar 

  • Nedivi E., Fieldust S., Theill L. E., and Hevron D. (1996) Aset of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc. Natl. Acad. Sci. U. S. A. 93, 2048–2053.

    PubMed  CAS  Google Scholar 

  • Nedivi E., Hevroni D., Naot D., Israeli D., and Citri Y. (1993) Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722.

    PubMed  CAS  Google Scholar 

  • Nedivi E., Javaherian A., Cantallops I., and Cline H. T. (2001) Developmental regulation of CPG15 expression in Xenopus. J. Comp. Neurol. 435, 464–473.

    PubMed  CAS  Google Scholar 

  • Nedivi E., Wu G. Y., and Cline H. T. (1998) Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863–1866.

    PubMed  CAS  Google Scholar 

  • Pagliardini S., Giavazzi A., Setola V., Lizier C., Di Luca M., DeBiasi S., and Battaglia G. (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum. Mol. Genet. 9, 47–56.

    PubMed  CAS  Google Scholar 

  • Papakonstanti E. A., Kampa M., Castanas E., and Stournaras C. (2003) A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol. Endocrinol. 17, 870–881.

    PubMed  CAS  Google Scholar 

  • Pellizzoni L., Kataoka N., Charroux B., and Dreyfuss G. (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624.

    PubMed  CAS  Google Scholar 

  • Perillo B., Sasso A., Abbondanza C., and Palumbo G. (2000) 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol. Cell. Biol. 20, 2890–2901.

    PubMed  CAS  Google Scholar 

  • Pratt W. B. and Toft D. O. (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360.

    PubMed  CAS  Google Scholar 

  • Raivich G., Bohatschek M., Da Costa C., Iwata O., Galiano M., Hristova M., et al. (2004) The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43, 57–67.

    PubMed  CAS  Google Scholar 

  • Rakotoarivelo C., Petite D., Lambard S., Fabre C., Rouleau C., Lumbroso S., et al. (2004) Receptors to steroid hormones and aromatase are expressed by cultured motoneurons but not by glial cells derived from rat embryo spinal cord. Neuroendocrinology 80, 284–297.

    PubMed  CAS  Google Scholar 

  • Razandi M., Oh P., Pedram A., Schnitzer J., and Levin E. R. (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16, 100–115.

    PubMed  CAS  Google Scholar 

  • Razandi M., Pedram A., Greene G. L., and Levin E. R. (1999) Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster overy cells. Mol. Endocrinol. 13, 307–319.

    PubMed  CAS  Google Scholar 

  • Razandi M., Pedram A., Park S. T., and Levin E. R. (2003) Proximal events in signaling by plasma membrane estrogen receptors. J. Biol. Chem. 278, 2701–2712.

    PubMed  CAS  Google Scholar 

  • Remage-Healey L. and Bass A. H. (2004) Rapid, hierarchical modulation of vocal patterning by steroid hormones. J. Neurosci. 24, 5892–5900.

    PubMed  CAS  Google Scholar 

  • Ribotta M. G., Menet V., and Privat A. (2004) Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. Acta Neurochir. Suppl. 89, 87–92.

    Google Scholar 

  • Rossoll W., Jablonka S., Andreassi C., Kroning A. K., Karle K., Monani U. R., and Sendtner M. (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812.

    PubMed  CAS  Google Scholar 

  • Rossoll W., Kroning A. K., Ohndorf U. M., Steegborn C., Jablonka S., and Sendtner M. (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 11, 93–105.

    PubMed  CAS  Google Scholar 

  • Singh M., Setalo G., Jr., Guan X., Warren M., and Toran-Allerand C. D. (1999) Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J. Neurosci. 19, 1179–1188.

    PubMed  CAS  Google Scholar 

  • Sortino M. A., Chisari M., Merlo S., Vancheri C., Caruso M., Nicoletti F., et al. (2004) Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death. Endocrinology 145, 5080–5086.

    PubMed  CAS  Google Scholar 

  • Streit W. J. (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133–139.

    PubMed  Google Scholar 

  • Sumner C. J., Huynh T. N., Markowitz J. A., Perhac J. S., Hill B., Coovert D. D., et al. (2003) Val proicacid increases SMN levels in spinal muscular atrophy patient cells. Ann. Neurol. 54, 647–654.

    PubMed  CAS  Google Scholar 

  • Takuma K., Baba A., and Matsuda T. (2004) Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol. 72, 111–127.

    PubMed  CAS  Google Scholar 

  • Tanzer L. and Jones K. J. (1997) Gonadal steroid regulation of hamster facial nerve regeneration: effects of dihydrotestoterone and estradiol. Exp. Neurol. 146, 258–264.

    PubMed  CAS  Google Scholar 

  • Tanzer L. and Jones K. J. (2004) Neurotherapeutic action of testosterone on hamster facial nerve regeneration: temporal window of effects. Horm. Behav. 45, 339–344.

    PubMed  CAS  Google Scholar 

  • Tanzer L., Sengelaub D. R., and Jones K. J. (1999) Estrogen receptor expression in the facial nucleus of adult hamsters: does axotomy recapitulate development? J. Neurobiol. 39, 438–446.

    PubMed  CAS  Google Scholar 

  • Tetzlaff J. E., Tanzer L. and Jones K. J. (2005a) Mechanisms of gonadal steroid-induced neuroprotection. Part I: Androgenic and estrogenic effects on mouse facial motoneuron survival and functional recovery following facial nerve injury, in review.

  • Tetzlaff J. E., Tanzer L. and Jones K. J. (2005b) Mechanisms of gonadal steroid-induced neuroprotection. Part II: Androgenic and estrogenic effects on facial motoneuron survival following heat shock in vitro, in review.

  • Wang Z. M., Dai C. F., Kanoh N., Chi, F. L., and Li K. Y. (2002) Apoptosis and expression of BCL-2 in facial motoneurons after facial nerve injury. Otol. Neurotol. 23, 397–404.

    PubMed  Google Scholar 

  • Wehner K. A., Ayala L., Kim Y., Young P. J., Hosler B. A., Lorson C. L., et al. (2002) Survival motor neuron protein in the nucleolus of mammalian neurons. Brain Res. 945, 160–173.

    PubMed  CAS  Google Scholar 

  • Wise P. M. (2002) Estrogens and neuroprotection. Trends Endocrinol. Metab. 13, 229–230.

    PubMed  CAS  Google Scholar 

  • Yang L. Y., Verhovshek T., and Sengelaub D. R. (2004) Brain-derived neurotrophic factor and androgen interact in the maintenance of dendritic morphology in a sexually dimorphic rat spinal nucleus. Endocrinology 145, 161–168.

    PubMed  CAS  Google Scholar 

  • Young P. J., Day P. M., Zhou J., Androphy, E. J., Morris G. E., and Lorson C. L. (2002) A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J. Biol. Chem. 277, 2852–2859.

    PubMed  CAS  Google Scholar 

  • Yu W. H. (1982) Effect of testosterone on the regeneration of the hypoglossal nerve in rats. Exp. Neurol. 77, 129–141.

    PubMed  CAS  Google Scholar 

  • Yu W. H. and Cao C. G. (1992) Testosterone fails to rescue moto neurons from axotomy-induced death in young rats. Neuroreport 3, 1042–1044.

    PubMed  CAS  Google Scholar 

  • Yu W. H. and McGinnis M. Y. (2001) Androgen receptors in cranial nerve motor nuclei of male and female rats. J. Neurobiol. 46, 1–10.

    PubMed  CAS  Google Scholar 

  • Yu W. H. and Srinivasan R. (1981) Effect of testosterone and 5 alpha-dihydrotestosterone on regeneration of the hypoglossal nerve in rats. Exp. Neurol. 71, 431–435.

    PubMed  CAS  Google Scholar 

  • Zhang H. L., Pan F., Hong D., Shenoy S. M., Singer R. H., and Bassell G. J. (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J. Neurosci. 23, 6627–6637.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetzlaff, J.E., Huppenbauer, C.B., Tanzer, L. et al. Motoneuron injury and repair. J Mol Neurosci 28, 53–64 (2006). https://doi.org/10.1385/JMN:28:1:53

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:1:53

Index Entries

Navigation