Skip to main content
Log in

Progesterone treatment of spinal cord injury

Effects on receptors, neurotrophins, and myelination

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In addition to its traditional role in reproduction, progesterone (PROG) has demonstrated neuroprotective and promyelinating effects in lesions of the peripheral and central nervous systems, including the spinal cord. The latter is a target of PROG, as nuclear receptors, as well as membrane receptors, are expressed by neurons and/or glial cells. When spinal cord injury (SCI) is produced at the thoracic level, several genes become sensitive to PROG in the region caudal to the lesion site. Although the cellular machinery implicated in PROG neuroprotection is only emerging, neurotrophins, their receptors, and signaling cascades might be part of the molecules involved in this process. In rats with SCI, a 3-d course of PROG treatment increased the mRNA of brain-derived neurotrophic factor (BDNF) and BDNF immunoreactivity in perikaryon and processes of motoneurons, whereas chromatolysis was strongly prevented. The increased expression of BDNF correlated with increased immunoreactivity for the BDNF receptor TrkB and for phosphorylated cAMP-responsive element binding in motoneurons. In the same SCI model, PROG restored myelination, according to measurements of myelin basic protein (MBP) and mRNA levels, and further increased the density of NG2 +-positive oligodendrocyte progenitors. These cells might be involved in remyelination of the lesioned spinal cord. Interestingly, similarities in the regulation of molecular parameters and some cellular events attributed to PROG and BDNF (i.e., choline acetyltransferase, Na,K-ATPase, MBP, chromatolysis) suggest that BDNF and PROG might share intracellular pathways. Furthermore, PROG-induced BDNF might regulate, in a paracrine or autocrine fashion, the function of neurons and glial cells and prevent the generation of damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acheson A. and Linsday R. M. (1996) Non-target-derived roles of the neurotrophins. Phil. Trans. R. Soc. Lond. B Biol. Sci. 351, 417–422.

    Article  CAS  Google Scholar 

  • Afshari F. S., Chu A. K., and Sato-Bigbeee C. (2001) Effect of cyclic AMP on the expression of myelin basic protein species and myelin proteolipid protein in committed oligodeodrocytes: differential involvement of the transcription factor CREB. J. Neurosci. Res. 66, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Al-Majed A. A., Brushart T. M., and Gordon T. (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 12, 4381–4390.

    Article  PubMed  CAS  Google Scholar 

  • Ankeny D. P., McTigue D. M., Guan Z., Yan Q., Kinstler O., Stokes B. T., and Jakeman L. B. (2001) Pegylafed brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury. Exp. Neurol. 170, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Azcoitia J., Leonelli E., Magnaghi V., Veiga S., García-Segura L. M., and Melcangi R. C. (2003) Progesterone and its derivatives dihydroprogesterone and tetrahydroprogesterone reduce myelin fiber morphological abnormalities and myelin fiber loss in the sciatic nerve of aged rats. Neurobiol. Aging 24, 853–860.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan J. C. 1978. An electron microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta). J. Neurol. Sci. 37, 59–82.

    Article  PubMed  CAS  Google Scholar 

  • Buck C. R., Seburn K. L., and Cope T. C. (2000) Neurotrophin expression by spinal motoneurons in adult and developing rats. J. Comp. Neurol. 416, 309–318.

    Article  PubMed  CAS  Google Scholar 

  • Bunge R. P., Puckett, W. R., Becerra, J. L., Marcillo, A., and Quencer, R. M. (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 59, 75–89.

    PubMed  CAS  Google Scholar 

  • Carrol W. M., Jennings, A. R., and Ironside L. J. (1998). Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121, 293–302.

    Article  Google Scholar 

  • Chan J. R., Cosgaya J. M., Wu Y. J., and Shooter E. M. (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc. Natl. Acad. Sci. U. S. A. 98, 14661–14668.

    Article  PubMed  CAS  Google Scholar 

  • Ciriza I., Azcoitia I., and Garcia-Segura L. M. (2004) Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo. J. Neuroendocrinol. 16, 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Davies A. M. (1996) Paracrine and autocrine actions of neurotrophic factors. Neurochem. Res. 21, 749–753.

    Article  PubMed  CAS  Google Scholar 

  • De Nicola A. F., Labombarda F., González S. L., González Deniselle M. C., Guennoun R., and Schumacher M. (2003) Steroid effects on glial cells: detrimental or protective for spinal cord function. Ann. N. Y. Acad. Sci. 1007, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Desarnaud F., Do Thai A. N., Brown A. M., et al. (1998). Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. J. Neurochem. 71, 1765–1768.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty K. D., Dreyfus C., and Black I. B. (2000). Brain-derived neurotrophic factor in astrocytes, oligoden-drocytes, microglia/macrophages after spinal cord injury. Neurobiol. Dis. 7, 574–585.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus C. F., Dai X., Lercher L. D., Racey B. R., Friedman W. J., and Black I. B. (1999) Expression of neurotrophins in the adult spinal cord in vivo. J. Neurosci. Res. 56, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Du Y., Fischer T. Z., Lee L. N., Lercher L. D., and Dreyfus C. F. (2003) Regionally specificeffects of BDNF on oligodendrocytes. Dev. Neurosci. 25, 116–128.

    Article  PubMed  CAS  Google Scholar 

  • Eidelberg E., Nguyen L. H., Polich R., and Walden J. G. (1989) Transsynaptic degeneration of motoneurones caudal to spinal lesions. Brain Res. Bull. 22, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Kucera J., Lee K. F., Loring J., and Jaenisch R. (1995) Studies on the physiological role of brain derived neurotrophic factor and neurotrophin-3 in knockout mice. Int. J. Dev. Biol. 39, 799–807.

    PubMed  CAS  Google Scholar 

  • Falkenstein E., Heck M., Gerdes D., et al. (1999) Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology 140(12), 5999–6002.

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein E., Meyer C., Eisen, C., Scriba, P. C., and Wehling M. (1996) Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem. Biophys Res. Commun. 229, 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner S., Tavazole, S. F., Maloratsky A., Jacobs K. M., Harris K. M., and Greenberg M. E. (1997) CREB, a major mediator of neuronal neurotrophic response. Neuron 19, 1031–1047.

    Article  PubMed  CAS  Google Scholar 

  • Forger N., Wagner C. H., Contois M., et al. (1998) Ciliary neurotrophic factor receptor in spinal motoneurones is regulated by gonadal hormones. J. Neurosci. 18, 8720–8729.

    PubMed  CAS  Google Scholar 

  • Gerdes D., Wehling M., Leube B., and Fankelstein E. (1998) Cloning and tissue expression of two putative steroid membrane receptors. J. Biol. Chem. 379, 907–911.

    Article  CAS  Google Scholar 

  • Ghoumari A. M., Bauliu E. E., and Schumacher M. (2005) Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience 135, 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Ghoumari A. M., Ibanez C., El-Etr M., Leclerc P., Eychenne B., O'Malley B. W., et al. (2003) Progesterone and its metabolites increase myelin basic protein expression in organotypic slices cultures of rat cerebellum. J. Neurochem. 86, 848–859.

    Article  PubMed  CAS  Google Scholar 

  • Giehl K. M., Schutte A., Mestres P., and Yan Q. (1998) The survival-promoting effect of glial cell line-derived neurotrophic factor on axotomized corticospinal neurons in vivo is mediated by an endogenous brain-derived neurotrophic factor mechanism. J. Neurosci. 18, 7351–7360.

    PubMed  CAS  Google Scholar 

  • Gomez-Pinilla F., Ying Z., Roy, R. R., Molteni R., and Edgerton V. R. (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 88, 2187–2195.

    Article  PubMed  CAS  Google Scholar 

  • González S. L., Labombarda F., González Deniselle M. C., Guennoun R., Schumacher M., and De Nicola A. F. (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor expression in the injured spinal cord. Neuroscience 125, 605–614.

    Article  PubMed  CAS  Google Scholar 

  • González Deniselle M. C., López-Costa J. J., González S. L., Labombarda F., Garay L., Guennoun R., et al. (2003) Basis of progesterone neuroprotection in spinal cord neurodegeneration. J. Steroid Biochem. Mol. Biol. 83, 199–209.

    Article  CAS  Google Scholar 

  • González Deniselle M. C., López-Costa J. J., Pecci Saavedra J., Pietranera L., González S. L., Garay L., et al. (2002) Progesterone neuroprotection in the wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol. Dis. 11, 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Grossman S. D., Rosenberg L. J., and Wrathall J. R. (2001) Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp. Neurol. 168, 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Guennoun R., Benmessahel Y., Delespierre B., Gouezou M., Rajkowski K. M., Baulieu E. E., and Schumacher M. (2001) Progesterone stimulates Krox-20 gene expression in Schwann cells. Mol. Brain Res. 90, 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Hamano K., Iwasaki N., Tayeka T., and Takita H. (1996) A quantitative analysis of rat central nervous system myelination using the immunohistochemical method for MBP. Brain Res. Dev. Brain Res. 93, 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Hansson A. C., Cintra A., Belluardo N., Sommer W., Bhatnagar M., Bader M., et al. (2000) Gluco- and mineralo-corticoid receptor-mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and neocortex of the rat. Eur. J. Neurosci. 12, 2918–2934.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard P. (2003) The response of novel NG2 glia to spinal cord injury. Spinal Res. 1, 100–107.

    Google Scholar 

  • Ianova T., Kuppers E., Engele J., and Beyer C. (2001) Estrogen stimulates brain-derived neurotrophic factor expression in embryonic mouse midbrain neurons through a membrane-mediated and calcium-dependent mechanism. J. Neurosci. Res. 66, 221–230.

    Article  Google Scholar 

  • Ibanez C., Shields S. A., Liere P., El-Etr M., Baulieu E. E., Schumacher M., and Franklin R. J. M. (2004), Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol. Appl. Neurobiol. 30, 80–89.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda O., Murakami M., Ino H., Yamazaki M., Koda M., Nakayama C., and Moriya H. (2002) Effects of brainderived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J. Neuropathol. Exp. Neurol. 61, 142–153.

    PubMed  CAS  Google Scholar 

  • Ishii K., Toda M., Nakai, Y., Asou H., Watanabe M., Nakamura, M., et al. (2001) Increase of oligodendrocyte progenitor cells after spinal cord injury. J. Neurosci. Res. 65, 500–507.

    Article  PubMed  CAS  Google Scholar 

  • Jakeman L. B., Wei P., Guan, Z., and Stokes B. T. (1998) Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury. Exp. Neurol. 154, 170–184.

    Article  PubMed  CAS  Google Scholar 

  • Jung-Testas I., Do Thi A., Koenig H., Desarnaud F., Shazand K., Schumacher, M., and Baulieu E. E. (1999) Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J. Steroid Biochem. Mol. Biol. 69, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Jung-Testas I., Schumacher M., Robel P., and Baulieu E. E. (1996) The neurosteroid progesterone increases the expression of myelin proteins (MBP and CNPase) in rat oligodendrocytes in primary culture. Cell. Mol. Neurobiol. 16, 439–443.

    Article  PubMed  CAS  Google Scholar 

  • Keirstead H. S. and Blackemore W. F. (1997) Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol. 56, 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N. R., Fan D. P., Ghiel K. M., Bedard A. M., Wiegand S. J., and Tetzlaff W. (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha 1-tubulin mRNA expression, and promote axonal regeneration. J. Neurosci. 17, 9583–9595.

    PubMed  CAS  Google Scholar 

  • Koenig H. L., Schumacher M., Ferzaz B., et al. (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268, 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  • Krebs C. J., Jarvis E. D., Chan J., Lydon J. P., Ogawa S., and Pfaff D. W. (2000) A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc. Natl. Acad. Sci. U.S.A. 97, 12816–12821.

    Article  PubMed  CAS  Google Scholar 

  • Labombarda F., González S. L., Gonzalez Deniselle M. C., Guennoun R., Schumacher M., and De Nicola A. F. (2002) Cellular basis for progesterone neuroprotection in the injured spinal cord. J. Neurotrauma 19, 343–355.

    Article  PubMed  Google Scholar 

  • Labombarda F., González S. L., Gonzalez Deniselle M. C., Vinson G. P., Schumacher M., De Nicola A. F., and Guennoun R. (2003) Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-DX expression in the rat spinal cord. J. Neurochem. 87, 902–913.

    Article  PubMed  CAS  Google Scholar 

  • Labombarda F., González S. L., Roig P., et al. (2000a) Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J. Steroid Biochem. Mol. Biol. 73, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Labombarda F., Guennoun R., González S. L., et al. (2000b) Immunocytochemical evidence for a progesterone receptor in neurones and glial cells of the rat spinal cord. Neurosci. Lett. 288, 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Levine J. M., Reynolds R., and Fawcett J. W. (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Li, G. and Blakemore W. F. (2004) The number of cells expressing the myelin-supporting oligodendrocyte marker PLP-exon 3b remains unchanged in wallerian degeneration. J. Neurotrauma 21, 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi V., Cavarretta I., Galbiati M., Martini L., and Melcangi R. C. (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res. Rev. 37, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre P. C., Le Beau M. M., Espinosa R. III, Ip N. Y., Belluscio L., de la Monte S. M., et al. (1991) Human and rat brain-derived neurotrophic factor and neurotrophin-3 gene structures, distributions, and chromosomal localizations. Genomics 10, 558–568.

    Article  PubMed  CAS  Google Scholar 

  • Majewska M. D., Harrison N. L., Shwartz R. D., Barker J. L., and Paul S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Maudsley S., and Martin B. (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27, 589–594.

    Article  PubMed  CAS  Google Scholar 

  • McTigue D. M., Horner, P. J., Stokes B. T., and Gage F. M. (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J. Neurosci. 18, 5354–5365.

    PubMed  CAS  Google Scholar 

  • Miranda R. C., Sohrabji F., and Toran-Allerand C. D. (1993) Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proc. Natl. Acad. Sci. U. S. A. 90, 6439–6443.

    Article  PubMed  CAS  Google Scholar 

  • Monks D. A., Arciszewska G., and Watson N. V. (2001) Estrogen-inducible progesterone receptors in the rat lumbar spinal cord: regulation by ovarian steroids and fluctuation across the estrous cycle. Horm. Behav. 40, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • Muse E. D., Jurevics H., Toews A. D., Matsushima G. K., and Morell P. (2001) Parameters related to lipid metabolism as markers of myelination in the mouse brain. J. Neurochem. 76, 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Nacimiento W., Sappok T., Brook G. A., Tóth L., Schoen S. W., Noth J., and Kreutzberg G. W. (1995) Structural changes of anterior horn neurons and their synaptic input caudal to low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study Acta Neuropathol. 90, 552–564.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M. and Bregman B. S. (2001) Differences in neurotrophic factor gene expression profiles between neonate and adult spinal cord after injury. Exp. Neurol. 169, 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A., Chang A., and Trapp B. D. (1999) NG2+glial cells: a novel glial cell population in the adult brain. J. Neuropathol. Exp. Neurol. 58, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  • Raza F. S., Takemori H., Tojo H. Okamoto M., and Vinson, G. P. (2001) Identification of the rat adrenal zona fasciculate/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur. J. Biochem. 268, 2141–2147.

    Article  PubMed  CAS  Google Scholar 

  • Roof R. and Hall E. (2000) Gender differences in acute CNS trauma and stroke: neuro protective effects of progesterone. J. Neurotrauma 17, 367–388.

    Article  PubMed  CAS  Google Scholar 

  • Roof R., Duvdevani R., Braswell L., et al. (1994) Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp. Neurol. 129, 64–69.

    Article  PubMed  CAS  Google Scholar 

  • Runko E., Wideman C., and Kaprielian Z. (1999) Cloning and expression of VEMA: a novel ventral midline antigen in the rat CNS. Mol. Cell. Neurosci. 14, 428–443.

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R., Hauser C. A. E., Trapp T., and Holsboer F. (1996) Neurosteroids: molecular mechanisms of action and psychopharmacological significance. J. Steroid Biochem. Mol. Biol. 56, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Sayer F. T., Oudega M., and Hagg T. (2002) Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Exp. Neurol. 175, 282–296.

    Article  PubMed  CAS  Google Scholar 

  • Schober A., Wolf N., Kahane N., Kalcheim C., Krieglstein K., and Unsicker K. (1999) Expression of neurotrophin receptors trkB and trkC and their ligands in rat adrenal gland and the intermediolateral column of the spinal cord. Cell Tissue Res. 296, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M., Akwal I., Guennoun R., robert F., Labombarda F., Desarnaud P., et al. (2000) Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J. Neurocytol. 29, 307–326.

    Article  PubMed  CAS  Google Scholar 

  • Selmin O., Lucier G. W., Clark G. C., Tritscher A. M., Vanden Heuvel J. P., Gastel J. A., et al. (1996) Isolation and characterization of a nivel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Carcinogenesis 17, 2609–2615.

    Article  PubMed  CAS  Google Scholar 

  • Sim F. J., Hinks G. L., and Franklin R. J. (2000) The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally induced demyelinating lesions in young and old rat brain. Neuroscience 100, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Skup M., Dwornik A., Macias M., Suleiczak D., Wiater M., and Czarkowska-Bauch J. (2002) Long-term locomotor training up-regulates trkBFL receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurones in the spinal cord. Exp. Neurol. 176, 289–307.

    Article  PubMed  CAS  Google Scholar 

  • Sohrabji F., Miranda R. C., and Toran-Allerand C. D. (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. U. S. A. 92, 11110–11114.

    Article  PubMed  CAS  Google Scholar 

  • Solum D. T. and Handa R. J. (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J. Neurosci. 22, 2650–2659.

    PubMed  CAS  Google Scholar 

  • Stein D. G. (2001) Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci. 24, 386–391.

    Article  PubMed  CAS  Google Scholar 

  • Stein D. G. and Fulop Z. L. (1998) Progesterone and recovery after traumatic brain injury: an overview. Neuroscientist 4, 435–442.

    Article  CAS  Google Scholar 

  • Tanridag T., Coskun T. Hurdag C., Arbak S., Aktan S., and Yegen B. (1999) Motor neuron degeneration due to aluminium depositon in the spinal cord: a light microscopical study. Acta Histochem. 101, 193–201.

    PubMed  CAS  Google Scholar 

  • Thoenen H. (1995) Neurotrophins and neuronal plasticity. Science 270, 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Thomas A., Nockels R., Pan H., et al. (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24, 2134–2138.

    Article  PubMed  CAS  Google Scholar 

  • Tolwani R. J., Cosyaga J. M., Varma S., Jacob R., Kuo L. E., and Shooter E. M. (2004) BDNF overexpression produces a long-term increase in myelin formation in the peripheral nervous system. J. Neurosci. Res. 77, 662–669.

    Article  PubMed  CAS  Google Scholar 

  • Verdi J. M. and Campagnoni A. T. (1990) Translational regulation by steroids. Identification of a steroid modulatory element in the 5′-untranslated region of the myelin basic protein messenger RNA. J. Biol. Chem. 265, 20314–20320.

    PubMed  CAS  Google Scholar 

  • Wakayama I. (1992) Morphometry of spinal motor neurons in amyotrophic lateral sclerosis with special reference to chromatolysis and intracytoplasmic inclusion bodies. Brain Res. 586, 12–18.

    Article  PubMed  CAS  Google Scholar 

  • Walton M. R. and Dragunow M. (2000) Is CREB a key to neuronal survival? Trends Neurosci. 23, 48–53.

    Article  PubMed  CAS  Google Scholar 

  • Winkler T., Sharma H. S., Stalberg E., and Badgaiyan R. D. (2000) Neurotrophic factors attenuate alterations in spinal cord evoked potentials and edema formation following trauma to the rat spinal cord. Acta Neurochir. Suppl. 76, 291–296.

    Google Scholar 

  • Yan Q., Matheson C., Lopez O., et al. (1994) The biological responses of axotomized adult motoneurones to brain-derived neurotrophic factor. J. Neurosci. 14, 5281–5291.

    PubMed  CAS  Google Scholar 

  • Ye P., Bagnell R., and D'Ercole A. J. (2003) Mouse NG2 + oligodendrocyte precursors express mRNA for proteolipid protein but not its DM-20 variant: a study of laser microdissection-captured NG2 + cells. J. Neurosci. 23, 4401–4405.

    PubMed  CAS  Google Scholar 

  • Young I. J. (1966) Morphological and histochemical studies of partially and totally deafferented spinal cord segments. Exp. Neurol. 14, 238–248.

    Article  PubMed  CAS  Google Scholar 

  • Yu W. H. (1989) Survival of motoneurones following axotomy is enhanced by lactation or by progesterone treatment. Brain Res. 49, 379–382.

    Article  Google Scholar 

  • Zhang J.-Y., Luo X.-G., Xian C. J., Liu Z.-H., and Zhou X.-F. (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur. J. Neurosci. 12, 4171–4180.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Bond J., and Thomas P. (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. U. S. A. 100, 2237–2242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro F. De Nicola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Nicola, A.F., Gonzalez, S.L., Labombarda, F. et al. Progesterone treatment of spinal cord injury. J Mol Neurosci 28, 3–15 (2006). https://doi.org/10.1385/JMN:28:1:3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:1:3

Index Entries

Navigation