Skip to main content
Log in

Microarray analysis of postictal transcriptional regulation of neuropeptides

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Unlike adults, kainic acid (KA)-induced status epilepticus (SE) in immature rats causes neither cell death nor recurrent spontaneous seizures. To elucidate the mechanisms of these distinct responses, transcriptional changes in neuropeptides were examined following KA-induced SE. We aimed to determine whether neuropeptides with anticonvulsant/neuroprotective properties were preferentially increased in immature rats while those with a proconvulsant/neurotoxic role were elevated to a greater extent in mature rats. We used high-density oligonucleotide gene arrays and directly compared transcriptional regulation of seven select neuropeptides at P15 and P30 over five time points. Total RNAs were isolated from hippocampi of 12 animals and pooled to hybridize to triplicate Affymetrix Genechips. Microarray results were validated by real-time quantitative RT-PCR (qRT-PCR). Independent individual RNA samples were purified for triplicate runs of qRT-PCR. Neuropeptides are significantly regulated by seizures in both immature and mature hippocampus. The magnitude of increase is significantly higher at P30 compared with that at P15, not only for neuropeptides with neurotoxic/proconvulsant properties but also for those with neuroprotective/anticonvulsant properties. Galanin is induced at 24 h only in P30 rats. CST shows high expression in immature hippocampus and is further increased after KA-induced SE only in P15. The expression trends seen in the microarray data are confirmed by qRT-PCR for all six neuropeptides analyzed. CST might play a neuroprotective role in immature rats, and its overexpression might prevent neuronal loss after seizure in adults. Also, suppression of tachykinin and corticotropin-releasing hormone might be effective in alleviating seizure-induced neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albala B. J., Moshe S. L., and Okada R. (1984) Kainic-acid-induced seizures: a developmental study. Brain Res. 315, 139–148.

    PubMed  CAS  Google Scholar 

  • Avishai-Eliner S., Brunson K. L., Sandman C. A., and Baram T. Z. (2002) Stressed-out, or in (utero)? Trends Neurosci. 25, 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Baraban S. C., Hollopeter G., Erickson J. C., Schwartzkroin P. A., and Palmiter R. D. (1997) Knock-out mice reveal a critical antiepileptic role for neuropeptide Y. J. Neurosci. 17, 8927–8936.

    PubMed  CAS  Google Scholar 

  • Baram T. Z. and Hatalski C. G. (1998) Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci. 21, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Behan D. P., De Souza E. B., Lowry P. J., Potter E., Sawchenko P., and Vale W. W. (1995) Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. Front. Neuroendocrinol. 16, 362–382.

    Article  PubMed  CAS  Google Scholar 

  • Bellmann R., Widmann R., Olenik C., Meyer D. K., Maas D., Marksteiner J., and Sperk G. (1991) Enhanced rate of expression and biosynthesis of neuropeptide Y after kainic acid-induced seizures. J. Neurochem. 56, 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y. (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403.

    Article  PubMed  CAS  Google Scholar 

  • Bengzon J., Mohapel P., Ekdahl C. T., and Lindvall O. (2002) Neuronal apoptosis after brief and prolonged seizures. Prog. Brain Res. 135, 111–119.

    PubMed  CAS  Google Scholar 

  • Braun H., Schulz S., Becker A., Schroder H., and Hollt V. (1998) Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res. 803, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Buckmaster P. S., Otero-Corchon V., Rubinstein M., and Low M. J. (2002) Heightened seizure severity in somatostatin knockout mice. Epilepsy Res. 48, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Calbet M., Guadano-Ferraz A., Spier A. D., Maj M., Sutcliffe J. G., Przewlocki R., and de Lecea L. (1999) Cortistatin and somatostatin mRNAs are differentially regulated in response to kainate. Brain Res. Mol. Brain Res. 72, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Cavalheiro E. A., Silva D. F., Turski W. A., Calderazzo-Filho L. S., Bortolotto Z. A., and Turski L. (1987) The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Brain Res. 465, 43–58.

    PubMed  CAS  Google Scholar 

  • Chen Y., Bender R. A., Frotscher M., and Baram T. Z. (2001) Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J. Neurosci. 21, 7171–7181.

    PubMed  CAS  Google Scholar 

  • Chepurnov S. A., Chepurnova N. E., and Berdiev R. K. (1998) Galanin controls excitability of the brain. Ann. N. Y. Acad. Sci. 865, 547–550.

    Article  PubMed  CAS  Google Scholar 

  • Cortes R., Ceccatelli S., Schalling M., and Hokfelt T. (1990) Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study. Synapse 6, 369–391.

    Article  PubMed  CAS  Google Scholar 

  • Drake C. T., Terman G. W., Simmons M. L., Milner T. A., Kunkel D. D., Schwartzkroin P. A., and Chavkin C. (1994) Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters. J. Neurosci. 14, 3736–3750.

    PubMed  CAS  Google Scholar 

  • Ehlers C. L., Henriksen S. J., Wang M., Rivier J., Vale W., and Bloom F. E. (1983) Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Res. 278, 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Elliott-Hunt C. R., Marsh B., Bacon A., Pope R., Vanderplank P., and Wynick D (2004) Galanin acts as a neuroprotective factor to the hippocampus. Proc. Natl. Acad. Sci. U. S. A. 10, 5105–5110.

    Article  CAS  Google Scholar 

  • Gibson U. E., Heid C. A., and Williams P. M. (1996) A novel method for real time quantitative RT-PCR. Genome Res. 6, 9951001.

    Article  Google Scholar 

  • Hashimoto T. and Obata K. (1991) Induction of somatostatin by kainic acid in pyramidal and granule cells of the rat hippocampus. Neurosci. Res. 12, 514–527.

    Article  PubMed  CAS  Google Scholar 

  • Hatalski C. G., Brunson K. L., Tantayanubutr B., Chen Y., and Baram T. Z. (2000) Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin-releasing hormone expression in the immature rat. Neuroscience 101, 571–580.

    Article  PubMed  CAS  Google Scholar 

  • Haut S. R., Veliskova J., and Moshe S. L. (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol. 3, 608–617.

    Article  PubMed  Google Scholar 

  • Heid C. A., Stevens J., Livak K. J., and Williams P. M. (1996) Real time quantitative PCR. Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  • Hellier J. L., Patrylo P. R., Buckmaster P. S., and Dudek F. E. (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Holland P. M., Abramson R. D., Watson R., and Gelfand D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 88, 7276–7280.

    Article  PubMed  CAS  Google Scholar 

  • Jokeit H. and Ebner A. (1999) Long term effects of refractory temporal lobe epilepsy on cognitive abilities: a cross sectional study. J. Neurol. Neurosurg. Psychiatry 67, 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Knoblach S. M. and Kubek M. J. (1997) Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: effect of partial and complete kinding. Neuroscience 76, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Kotloski R., Lynch M., Lauersdorf S., and Sutula T. (2002) Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog. Brain Res. 135, 95–110.

    Article  PubMed  Google Scholar 

  • Leite J. P., Garcia-Cairasco N., and Cavalheiro E. A. (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res. 50, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Lin E. J., Richichi C., Young D., Baer K., Vezzani A., and During M. J. (2003) Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. Eur. J. Neurosci. 18, 2087–2092.

    Article  PubMed  Google Scholar 

  • Liu H., Mazarati A. M., Katsumori H., Sankar R., and Wasterlain C. G. (1999) Sustance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus. Proc. Natl. Acad. Sci. U. S. A. 96, 5286–5291.

    Article  PubMed  CAS  Google Scholar 

  • Liu H., Sankar R., Shin D. H., Mazarati A. M., and Wasterlain C. G. (2000) Patterns of status epilepticus-induced substance P expression during development. Neuroscience 101, 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Maecker H., Desai A., Dash R., Rivier J., Vale W., and Sapolsky R. (1997) Astressin, a novel and potent CRF antagonist, is neuroprotective in the hippocampus when administered after a seizure. Brain Res. 744, 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Mazarati A. M., Hohmann J. G., Bacon A., Liu H., Sankar R., Steiner R. A., et al. (2000) Modulation of hippocampal excitability and seizures by galanin. J. Neurosci. 20, 6276–6281.

    PubMed  CAS  Google Scholar 

  • Mazarati A. M., Liu H., Soomets U., Sankar R., Shin D., Katsumori H., et al. (1998) Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J. Neurosci. 18, 10070–10077.

    PubMed  CAS  Google Scholar 

  • Merchenthaler I., Lopez F. J., and Negro-Vilar A. (1993) Anatomy and physiology of central galanin-containing pathways. Prog. Neurobiol. 40, 711–769.

    Article  PubMed  CAS  Google Scholar 

  • Nadler J. V. (1981) Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 29, 2031–2042.

    Article  PubMed  CAS  Google Scholar 

  • Nitecka L., Tremblay E., Charton G., Bouillot J. P., Berger M. L., and Ben-Ari Y. (1984) Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae. Neuroscience 13, 1073–1094.

    Article  PubMed  CAS  Google Scholar 

  • Perez J., Vezzani A., Civenni G., Tutka P., Rizzi M., Schupbach E., and Hoyer D. (1995) Functional effects of D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Trp-NH2 and differential changes in somatostatin receptor messenger RNAs, binding sites and somatostatin release in kainic acid-treated rats. Neuroscience 65, 1087–1097.

    Article  PubMed  CAS  Google Scholar 

  • Piekut D. T. and Phipps B. (1998) Increased corticotropin-releasing factor immunoreactivity in select brain sites following kainate elicited seizures. Brain Res. 781, 100–113.

    Article  PubMed  CAS  Google Scholar 

  • Poirier J. L., Capek R., and De Koninck Y. (2000) Differential progression of Dark Neuron and Fluoro-Jade labelling in the rat hippocampus following pilocarpine-induced status epilepticus. Neuroscience 97, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Ribak C. E. and Baram T. Z. (1996) Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. Brain Res. Dev. Brain Res. 91, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Richichi C., Lin E. J., Stefanin D., Colella D., Ravizza T., Grignaschi G., et al. (2004) Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J. Neurosci. 24, 3051–3059.

    Article  PubMed  CAS  Google Scholar 

  • Romijn H. J., Hofman M. A., and Gramsbergen A. (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum. Dev. 26, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Sadzot B. (1997) Epilepsy: a progressive disease? BMJ 314, 391,392.

    PubMed  CAS  Google Scholar 

  • Sayin U., Osting S., Hagen J., Rutecki P., and Sutula T. (2003) Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J. Neurosci. 23, 2759–2768.

    PubMed  CAS  Google Scholar 

  • Schwarzer C., Sperk G., Samanin R., Rizzi M., Gariboldi M., and Vezzani A. (1996) Neuropeptides—immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Res. Brain Res. Rev. 22, 27–50.

    Article  PubMed  CAS  Google Scholar 

  • Senut M. C., Menetrey D., and Lamour Y. (1989) Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of Broca to dorsal hippocampus, cingulate cortex and olfactory bulb: a combined wheatgerm agglutinin-apohorseradish peroxidase-gold immunohistochemical study. Neuroscience 30, 385–403.

    Article  PubMed  CAS  Google Scholar 

  • Smialowska M., Bijak M., Sopala M., and Tokarski K. (1996) Inhibitory effect of NPY on the picrotoxin-induced activity in the hippocampus: a behavioural and electrophysiological study. Neuropeptides 30, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Smialowska M., Wieronska J. M., and Szewczyk B. (2003) Neuroprotective effect of NPY on kainate neurotoxicity in the hippocampus. Pol. J. Pharmacol. 55, 979–986.

    PubMed  CAS  Google Scholar 

  • Sperber E. F., Haas K. Z., Stanton P. K., and Moshe S. L. (1991) Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Brain Res. Dev. Brain Res. 60, 88–93.

    Article  PubMed  CAS  Google Scholar 

  • Sperk G., Marksteiner J., Gruber B., Bellmann R., Mahata M., and Ortler M. (1992) Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience 50, 831–846.

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom C. E., Thompson J. L., and Holmes G. L. (1992) Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res. Dev. Brain Res. 65, 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Storey J. D. and Tibshirani R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440–9445.

    Article  PubMed  CAS  Google Scholar 

  • Toth Z., Yan X. X., Haftoglou S., Ribak C. E., and Baram T. Z. (1998) Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J. Neurosci. 18, 4285–4294.

    PubMed  CAS  Google Scholar 

  • Vezzani A. and Hoyer D. (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur. J. Neurosci. 11, 3767–3776.

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A., Michalkiewicz M., Michalkiewicz T., Moneta D., Ravizza T., Richichi C., et al. (2002) Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience 110, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • Woldbye D. P., Larsen P. J., Mikkelsen J. D., Klemp K., Madsen T. M., and Bolwig T. G. (1997) Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat. Med. 3, 761–764.

    Article  PubMed  CAS  Google Scholar 

  • Woldbye D. P., Madsen T. M., Larsen P. J., Mikkelsen J. D., and Bolwig T. G. (1996) Neuropeptide Y inhibits hippocampal seizures and wet dog shakes. Brain Res. 737, 162–168.

    Article  PubMed  CAS  Google Scholar 

  • Zachrisson O., Lindefors N., and Brene S. (1998) A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity. Brain Res. Mol. Brain Res. 60, 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X., Cui S. S., Wallace A. E., Hannesson D. K., Schmued L. C., Saucier D. M., et al. (2002) Relations between brain pathology and temporal lobe epilepsy. J. Neurosci. 22, 6052–6061.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sookyong Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, D.N., Chung, H., Elliott, R.C. et al. Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 25, 285–298 (2005). https://doi.org/10.1385/JMN:25:3:285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:3:285

Index Entries

Navigation