Skip to main content
Log in

Brain effects of chronic IBD in areas abnormal in autism and treatment by single neuropeptides secretin and oxytocin

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Recent research points to the connection between behavioral and gut disorders. Early adverse events are associated with inflammatory bowel disease (IBD). In animal models, maternal deprivation and social isolation predispose to gastric erosion and brain pathology. This study examined (1) brain effects of chronic gastrointestinal inflammation in a rat model of acquired IBD and (2) whether such changes are resolved by individual secretin (S) or oxytocin (OT) peptide treatment. Neurological manifestations of IBD were mapped by c-fos gene expression in male Sprague-Dawley rats (n=10) with trinitrobenzene sulfonic acid (TNBS)-induced IBD vs controls (n=11). IBD was characterized by moderate/severe infiltration of inflammatory cells 10 d after TNBS infusion. Age-matched pairs were processed for immunocytochemical detection of Fos, expressed when neurons are stimulated. S or OT (100 µg/250 µL saline) or equivolume saline was administered iv by Alzet pump for 20 d after disease onset. Degree of resolution of colitis-induced brain activation was assessed by c-fos expression, and mean numbers of Fos-immunoreactive nuclei for each group were compared using Independent Samples T-test. Chronic IBD activated periventricular gray, hypothalamic/visceral thalamic stress axes and cortical domains, and septal/preoptic/amygdala, brain areas abnormal in autism. Single peptide treatment with S or OT did not alter the effects of inflammation on the brain. Brain areas concomitantly activated by visceral inflammation are those often abnormal in autism, suggesting that IBD could be a model for testing treatments of autism. Other single and combined peptide treatments of IBD should be tested. The clinical implications for treating autism, IBD, and concomitant sickness behaviors with peptide therapy, with or without maternal nurturing as a natural equivalent, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad C., Martinez C., Juarranz M. G., Arranz A., Leceta J., Delgado M., and Gomariz R. P. (2003) Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology 124, 961–971.

    PubMed  CAS  Google Scholar 

  • Ackerman S. H., Hofer M. A., and Weiner H. (1978) Predisposition to gastric erosions in the rat: behavioral and nutritional effects of early maternal separation. Gastroenterology 75, 649–654.

    PubMed  CAS  Google Scholar 

  • Adolphs R., Baron-Cohen S., and Tranel D. (2002) Impaired recognition of social emotions following amygdala damage. J. Cogn. Neurosci. 14, 1264–1274.

    PubMed  Google Scholar 

  • Altemus M., Redwine L. S., Leong Y. M., Frye C. A., Porges S. W., and Carter C. S. (2001) Responses to laboratory psychosocial stress in postpartum women. Psychosom. Med. 63, 814–821.

    PubMed  CAS  Google Scholar 

  • Ansorge M. S., Zhou M., Lira A., Hen R., and Gingrich J. A. (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881.

    PubMed  CAS  Google Scholar 

  • Aylward E. H., Minshew N. J., Goldstein G., Honeycutt N. A., Augustine A. M., Yates K. O., et al. (1999) MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53, 2145–2150.

    PubMed  CAS  Google Scholar 

  • Ballaban-Gil K. and Tuchman R. (2000) Epilepsy and epileptiform EEG: association with autism and language disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6, 300–308.

    PubMed  CAS  Google Scholar 

  • Banks W. A., Goulet M., Rusche J. R., Niehoff M. L., and Boismenu R. (2002) Differential transport of a secretin analog across the blood-brain and blood-cerebrospinal fluid barriers of the mouse. J. Pharmacol. Exp. Ther. 302, 1062–1069.

    PubMed  CAS  Google Scholar 

  • Barber W. D. and Yuan C. S. (1993) Gastric vagal-evoked and greater splanchnic-evoked unitary responses in the hypothalamus. Am. J. Physiol. 264, G1133-G1141.

    PubMed  CAS  Google Scholar 

  • Barreau F., Cartier C., Ferrier L., Fioramonti J., and Bueno L. (2004) Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 127, 524–534.

    PubMed  CAS  Google Scholar 

  • Bauman M. and Kemper T. L. (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35, 866–874.

    PubMed  CAS  Google Scholar 

  • Bauman M. L. and Kemper T. L. (2003) The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found. Symp. 251, 112–122.

    Article  PubMed  Google Scholar 

  • Bauminger N. and Kasari C. (2000) Loneliness and friendship in high-functioning children with autism. Child Dev. 71(2), 447–456.

    PubMed  CAS  Google Scholar 

  • Bayliss W. M. and Starling E. H. (1902) The mechanism of pancreatic secretion. J. Physiol. (Lond.) 28, 325–353.

    CAS  Google Scholar 

  • Belmonte M. K., Allen G., Beckel-Mitchener A., Boulanger L. M., Carper R. A., and Webb S. J. (2004) Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231.

    PubMed  CAS  Google Scholar 

  • Bowlby J. (1958) The nature of the child’s tie to his mother. Int. J. Psychoanal. 39, 350–373.

    PubMed  CAS  Google Scholar 

  • Buchsbaum M. S., Hollander E., Haznedar M. M., Tang C., Spiegel-Cohen J., Wei T. C., et al. (2001) Effect of fluoxetine on regional cerebral metabolism in autistic spectrum disorders: a pilot study. Int. J. Neuropsychopharmacol. 4, 119–125.

    PubMed  CAS  Google Scholar 

  • Burke W. J., Li S. W., Chung H. D., Ruggiero D. A., Kristal B. S., Johnson E. M., et al. (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25, 101–115.

    PubMed  CAS  Google Scholar 

  • Carter C. S. (1998) Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 23, 779–818.

    PubMed  CAS  Google Scholar 

  • Cetin Y. (1990) Secretin-cells of the mammalian intestine contain serotonin. Histochemistry 93, 601–606.

    PubMed  CAS  Google Scholar 

  • Cho J. H. (2003) Significant role of genetics in IBD: the NOD2 gene. Rev. Gastroenterol. Disord. 3(Suppl. 1), S18–22.

    PubMed  Google Scholar 

  • Chugani D. C., Muzik O., Rothermel R., Behen M., Chakraborty P., Mangner T., et al. (1997) Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann. Neurol. 42, 666–669.

    PubMed  CAS  Google Scholar 

  • Comi A. M., Zimmerman A. W., Frye V. H., Law P. A., and Peeden J. N. (1999) Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J. Child Neurol. 14, 388–394.

    PubMed  CAS  Google Scholar 

  • Cook E. H. (1990) Autism: review of neurochemical investigation. Synapse 6, 292–308.

    PubMed  CAS  Google Scholar 

  • Courchesne E. (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment. Retard. Dev. Disabil. Res. Rev. 10, 106–111.

    PubMed  Google Scholar 

  • Courchesne E. (1991) Neuroanatomic imaging in autism. Pediatrics 87, 781–790.

    PubMed  CAS  Google Scholar 

  • Cushing B. S., Yamamoto Y., Hoffman G. E., and Carter C. S. (2003) Central expression of c-Fos in neonatal male and female prairie voles in response to treatment with oxytocin. Brain Res. Dev. Brain Res. 143, 129–136.

    PubMed  CAS  Google Scholar 

  • Daenen E. W., Wolterink G., Gerrits M. A., and Van Ree J. M. (2002) The effects of neonatal lesions in the amygdala or ventral hippocampus on social behaviour later in life. Behav. Brain Res. 136, 571–582.

    PubMed  Google Scholar 

  • Davidson R. J. and Fox N. A. (1989) Frontal brain asymmetry predicts infants’ response to maternal separation. J. Abnorm. Psychol. 98, 127–131.

    PubMed  CAS  Google Scholar 

  • Dawson G., Ashman S. B., Panagiotides H., Hessl D., Self J., Yamada E., and Embry L. (2003) Preschool outcomes of children of depressed mothers: role of maternal behavior, contextual risk, and children’s brain activity. Child Dev. 74, 1158–1175.

    PubMed  Google Scholar 

  • Dawson G., Meltzoff A. N., Osterling J., Rinaldi J., and Brown E. (1998) Children with autism fail to orient to naturally occurring social stimuli. J. Autism Dev. Disord. 28, 479–485.

    PubMed  CAS  Google Scholar 

  • DeFelice M. L., Ruchelli E. D., Markowitz J. E., Strogatz M., Reddy K. P., Kadivar K., et al. (2003) Intestinal cytokines in children with pervasive developmental disorders. Am. J. Gastroenterol. 98, 1777–1782.

    PubMed  CAS  Google Scholar 

  • De Fosse L., Hodge S. M., Makris N., Kennedy D. N., Caviness V. S. Jr., McGrath L., et al. (2004) Language-association cortex asymmetry in autism and specific language impairment. Ann. Neurol. 56, 757–766.

    PubMed  Google Scholar 

  • Delgado M., Leceta J., Sun W., Gomariz R. P., and Ganea D. (2000) VIP and PACAP induce shift to a Th2 response by upregulating B7.2 expression. Ann. N. Y. Acad. Sci. 921, 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Dhossche D. M. and Stanfill S. (2004) Could ECT be effective in autism? Med. Hypotheses 63, 371–376.

    PubMed  Google Scholar 

  • Dietrich W. and Erbguth F. (2003) Neurological complications of inflammatory intestinal diseases. Fortschr. Neurol. Psychiatr. 71, 406–414.

    PubMed  CAS  Google Scholar 

  • Dohi T., Fujihashi K., Kiyono H., Elson C. O., and McGhee J. R. (2000) Mice deficient in Th1- and Th2-type cytokines develop distinct forms of hapten-induced colitis. Gastroenterology 119, 724–733.

    PubMed  CAS  Google Scholar 

  • Dohi T., Fujihashi K., Rennert P. D., Iwatani K., Kiyono H., and McGhee J. R. (1999) Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J. Exp. Med. 189(8), 1169–1180.

    PubMed  CAS  Google Scholar 

  • El-Salhy M., Danielsson A., Stenling R., and Grimelius L. (1997) Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med. 242, 413–419.

    PubMed  CAS  Google Scholar 

  • Ferguson S. A., Paule M. G., and Holson R. R. (2001) Neonatal dxamethasone on day 7 in rats causes behavioral alterations reflective of hippocampal, but not cerebelar, deficits. Neurotoxicol. Teratol. 23, 57–69.

    PubMed  CAS  Google Scholar 

  • Forrester J. S. (2004) Common ancestors: chronic progressive diseases have the same pathogenesis. Clin. Cardiol. 27, 186–190.

    PubMed  Google Scholar 

  • Francis D. D., Young L. J., Meaney M. J., and Insel T. R. (2002) Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors: gender differences. J. Neuroendocrinol. 14, 349–353.

    PubMed  CAS  Google Scholar 

  • Fuxe K., Andersson K., Hokfelt T., Mutt V., Ferland L., Agnati L. F., et al. (1979) Localization and possible function of peptidergic neurons and their interactions with central catecholamine neurons, and the central actions of gut hormones. Fed. Proc. 38, 2333–2340.

    PubMed  CAS  Google Scholar 

  • Gandhi S., Tsueshita T., Onyuksel H., Chandiwala R., and Rubinstein I. (2002) Interactions of human secretin with sterically stabilized phospholipid micelles amplify peptide-induced vasodilation in vivo. Peptides 23, 1433–1439.

    PubMed  CAS  Google Scholar 

  • Green L., Fein D., Modahl C., Feinstein C., Waterhouse L., and Morris M. (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol. Psychiatry 50, 609–613.

    PubMed  CAS  Google Scholar 

  • Gupta S. (2000) Immunological treatments for autism. J. Autism Dev. Disord. 30, 475–479.

    PubMed  CAS  Google Scholar 

  • Gupta S., Aggarwal S., Rashanravan B., and Lee T. (1998) Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J. Neuroimmunol. 85, 106–109.

    PubMed  CAS  Google Scholar 

  • Haraldsen L., Soderstrom-Lauritzsen V., and Nilsson G. E. (2002) Oxytocin stimulates cerebral blood flow in rainbow trout (Oncorhynchus mykiss) through a nitric oxide dependent mechanism. Brain Res. 929, 10–14.

    PubMed  CAS  Google Scholar 

  • Hatton G. I., Modney B. K., and Salm A. K. (1992) Increases in dendritic bundling and dye coupling of supraoptic neurons after the induction of maternal behavior. Ann. N. Y. Acad. Sci. 12, 142–155.

    Google Scholar 

  • Haxby J. V., Hoffman E. A., and Gobbini M. I. (2002) Human neural systems for face recognition and social communication. Biol. Psychiatry 51, 59–67.

    PubMed  Google Scholar 

  • Herbert M. R., Ziegler D. A., Makris N., Filipek P. A., Kemper T. L., Normandin J. J., et al. (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann. Neurol. 55, 530–540.

    PubMed  Google Scholar 

  • Hofer M. A. (1994a) Early relationships as regulators of infant physiology and behavior. Acta Paediatr. Suppl. 397, 9–18.

    PubMed  CAS  Google Scholar 

  • Hofer M. A. (1994b) Hidden regulators in attachment, separation, and loss. Monogr. Soc. Res. Child Dev. 59, 192–207.

    PubMed  CAS  Google Scholar 

  • Hofer M. A. (1996) On the nature and consequences of early loss. Psychosom. Med. 58, 570–581.

    PubMed  CAS  Google Scholar 

  • Hollander E., Novotny S., Hanratty M., Yaffe R., DeCaria C. M., Aronowitz B. R., and Mosovich S. (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28, 193–198.

    PubMed  CAS  Google Scholar 

  • Horvath K., Stefanatos G., Sokolski K. N., Wachtel R., Nabors L., and Tildon J. T. (1998) Improved social and language skills after secretin administration in patients with autistic spectrum disorders. J. Assoc. Acad. Minor. Phys. 9, 9–15.

    PubMed  CAS  Google Scholar 

  • Howard M. A., Cowell P. E, Boucher J., Broks P., Mayes A., Farrant A., and Roberts N. (2000) Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport 11, 2931–2935.

    PubMed  CAS  Google Scholar 

  • Iijima H., Takahashi I., Kishi D., Kim J. K., Kawano S., Hori M., and Kiyono H. (1999) Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. J. Exp Med. 190, 607–615.

    PubMed  CAS  Google Scholar 

  • Insel T. R. and Fernald R. D. (2004) How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722.

    PubMed  CAS  Google Scholar 

  • Jankowski M., Wang D., Hajjar F., Mukaddam-Daher S., McCann S. M., and Gutkowska J. (2000) Oxytocin and its receptors are synthesized in the rat vasculature. Proc. Natl. Acad. Sci. U. S. A. 97, 6207–6211.

    PubMed  CAS  Google Scholar 

  • Jyonouchi H., Sun S., and Itokazu N. (2002) Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 46, 76–84.

    PubMed  CAS  Google Scholar 

  • Kalin N. H., Larson C., Shelton S. E., and Davidson R. J. (1998) Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci. 112, 286–292.

    PubMed  CAS  Google Scholar 

  • Kandel E. and Abel T. (1995) Neuropeptides, adenylyl cyclase, and memory storage. Science 268, 825,826.

    PubMed  CAS  Google Scholar 

  • Kawasaki Y., Yokota K., Shinomiya M., Shimizu Y., and Niwa S. (1997) Brief report: electroencephalographic paroxysmal activities in the frontal area emerged in middle childhood and during adolescence in a follow-up study of autism. J. Autism Dev. Disord. 27, 605–620.

    PubMed  CAS  Google Scholar 

  • Kern J. K. (2003) Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 25, 377–382.

    PubMed  Google Scholar 

  • Kern J. K., Espinoza E., and Trivedi M. H. (2004) The effectiveness of secretin in the management of autism. Expert Opin. Pharmacother. 5, 379–387.

    PubMed  CAS  Google Scholar 

  • Kimura M., Masuda T., Hiwatashi N., Toyota T., and Nagura H. (1994) Changes in neuropeptide-containing nerves in human colonic mucosa with inflammatory bowel disease. Pathol. Int. 44, 624–634.

    Article  PubMed  CAS  Google Scholar 

  • Koren G. (2001) Repeated doses of porcine secretin in the treatment of autism: a randomized, placebo-controlled trial. Pediatrics 107, E71.

  • Koves K., Kausz M., Reser D., Illyes G., Takacs J., Heinzlmann A., et al. (2004) Secretin and autism: a basic morphological study about the distribution of secretin in the nervous system. Regul. Pept. 123, 209–216.

    PubMed  CAS  Google Scholar 

  • Kucharzik T., Lugering N., Adolf M., Domschke W., and Stoll R. (1997) Synergistic effect of immunoregulatory cytokines on peripheral blood monocytes from patients with inflammatory bowel disease. Dig. Dis. Sci. 4, 805–812.

    Google Scholar 

  • Kulman G., Lissoni P., Rovelli F., Roselli M.G., Brivio F., and Sequeri P. (2000) Evidence of pineal endocrine hypofunction in autistic children. Neurol. Endocrinol. Lett. 21, 31–34.

    Google Scholar 

  • Kuntz A., Clement H. W., Lehnert W., Van Calker D., Hennighausen K., Gerlach M., and Schulz E. (2004) Effects of secretin on extracellular amino acid concentrations in rat. J. Neural Transm. 111, 931–939.

    PubMed  CAS  Google Scholar 

  • Lamson D. W. and Plaza S. M. (2001) Transdermal secretin for autism—a case report. Altern. Med. Rev. 6, 311–313.

    PubMed  CAS  Google Scholar 

  • Leventhal B. L., Cook E. H. Jr, Morford M., Ravitz A., and Freedman D. X. (1990) Relationships of whole blood serotonin and plasma norepinephrine within families. J. Autism Dev. Disord. 20, 499–511.

    PubMed  CAS  Google Scholar 

  • Lewine J. D., Andrews R., Chez M., Patil A. A., Devinsky O., Smith M., et al. (1999) Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics 104, 405–418.

    PubMed  CAS  Google Scholar 

  • Licinio J., Alvarado I., and Wong M. L. (2002) Autoimmunity in autism. Mol. Psychiatry 7, 329.

    PubMed  CAS  Google Scholar 

  • Lightdale J. R., Hayer C., Duer A., Lind-White C., Jenkins S., Siegel B., et al. (2001) Effects of intravenous secretin on language and behavior of children with autism and gastrointestinal symptoms: a single-blinded, open-label pilot study. Pediatrics 108, 90.

    Google Scholar 

  • Linden D. R., Chen J. X., Gershon M. D., Sharkey K. A., and Mawe G. M. (2003) Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G207–216.

    PubMed  CAS  Google Scholar 

  • Lossos A., River Y., Eliakim A., and Steiner I. (1995) Neurologic aspects of inflammatory bowel disease. Neurology 45, 416–421.

    PubMed  CAS  Google Scholar 

  • Lucas A., Adrian T. E., Bloom S. R., and Aynsley-Green A. (1980) Plasma secretin in neonates. Acta Paediatr. Scand. 69, 205–210.

    PubMed  CAS  Google Scholar 

  • Martin-Ruiz C. M., Lee M., Perry R. H., Baumann M., Court J. A., and Perry E. K. (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res. Mol. Brain Res. 123, 81–90.

    PubMed  CAS  Google Scholar 

  • Mash E. J. and Barkley R. A., eds. (2003) Child Psychopathology, 2nd ed., Guilford Press, New York.

    Google Scholar 

  • Matri S., Boubaker J., Hamzaoui S., Bardi R., Ayed K., and Filali A. (2003) The role of major histocompatibility complex genes in the pathogenesis of chronic inflammatory bowel diseases. Tunis. Med. 81, 289–294.

    PubMed  Google Scholar 

  • Matthiesen A. S., Ransjo-Arvidson A. B., Nissen E., and Uvnas-Moberg K. (2001) Postpartum maternal oxytocin release by newborns: effects of infant hand massage and sucking. Birth 28, 13–19.

    PubMed  CAS  Google Scholar 

  • Meaney M. J. (2004) Environmental ‘Programming’ of Individual Differences in Defensive and Reproductive Behaviors Through Maternal Effects on Chromatin Structure and Gene Expression. Prog. # 591. 2004 Abstracts. Washington, DC: Society for Neuroscience On-Line.

    Google Scholar 

  • Meaney M. J., Aitken D. H., van Berkel C., Bhatnagar S., and Sapolsky R. M. (1988) Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768.

    PubMed  CAS  Google Scholar 

  • Menold M. M., Shao Y., Wolpert C. M., Donnelly S. L., Raiford K. L., Martin E. R., et al. (2001) Association analysis of chromosome 15 GABAA receptor subunit genes in autistic disorder. J. Neurogenet. 15, 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Morgan J. I. and Curran T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14, 421–451.

    PubMed  CAS  Google Scholar 

  • Morris G. P., Beck P. L., Herridge M. S., Depew W. T., Szewczuk M. R., and Wallace J. L. (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96, 795–803.

    PubMed  CAS  Google Scholar 

  • Muller R. A., Cauich C., Rubio M. A., Mizuno A., and Courchesne E. (2004) Abnormal activity patterns in premotor cortex during sequence learning in autistic patients. Biol. Psychiatry 56, 323–332.

    PubMed  Google Scholar 

  • Myers K., Goulet M., Rusche J., Boismenu R., and Davis M. (2004) Inhibition of fear potentiated startle in rats following peripheral administration of secretin. Psychopharmacology (Berl.) 172, 94–99.

    CAS  Google Scholar 

  • Nelson K. B., Grether J. K., Croen L. A., Dambrosia J. M., Dickens B. F., Jelliffe L. L., et al. (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann. Neurol. 49, 597–606.

    PubMed  CAS  Google Scholar 

  • Ogai M., Matsumoto H., Suzuki K., Ozawa F., Fukuda R., Uchiyama I., et al. (2003) fMRI study of recognition of facial expressions in high-functioning autistic patients. Neuroreport 14, 559–563.

    PubMed  Google Scholar 

  • Owley T., McMahon W., Cook E. H., Laulhere T., South M., Mays L. Z., et al. (2001) Multisite, double-blind, placebo-controlled trial of porcine secretin in autism. J. Am. Acad. Child Adolesc. Psychiatry 40, 1293–1299.

    PubMed  CAS  Google Scholar 

  • Pedersen C. A. and Boccia M. L. (2002) Oxytocin links mothering received, mothering bestowed and adult stress responses. Stress 5, 259–267.

    PubMed  CAS  Google Scholar 

  • Pelphrey K. A., Sasson N. J., Reznick J. S., Paul G., Goldman B. D., and Piven, J. (2002) Visual scanning of faces in autism. J. Autism Dev. Disord. 2, 249–261.

    Google Scholar 

  • Popovic M., Popovic N., Eric-Jovicic M., and Jovanova-Nesic K. (1999) Immune responses in nucleus basalis magnocellularis-lesioned rats exposed to chronic isolation stress. Int. J. Neurosci. 100, 125–131.

    PubMed  Google Scholar 

  • Porges S. W. (2001) The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42, 123–146.

    PubMed  CAS  Google Scholar 

  • Richdale A. L. and Prior M. R. (1992) Urinary cortisol circadian rhythm in a group of high-functioning children with autism. J. Autism Dev. Disord. 22, 433–447.

    PubMed  CAS  Google Scholar 

  • Ringel Y. and Drossman D. A. (2002) Irritable bowel syndrome: classification and conceptualization. J. Clin. Gastroenterol. 35, S7–10.

    Article  PubMed  Google Scholar 

  • Ringel Y. and Drossman D. A. (2001) Psychosocial aspects of Crohn’s disease. Surg. Clin. North Am. 81, 231–252.

    PubMed  CAS  Google Scholar 

  • Roberts W., Weaver L., Brian J., Bryson S., Emelianova S., Griffiths A. M., et al. (2001) Homeopathic secretin in autism: a clinical pilot study. Br. Homeopath. J. 90, 86–91.

    Google Scholar 

  • Ruggiero D. A., Regunathan S., Wang H., Milner T. A., and Reis D. J. (1998) Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res. 780, 270–293.

    PubMed  CAS  Google Scholar 

  • Rumsey J. M. and Ernst M. (2000) Functional neuroimaging of autistic disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6, 171–179.

    PubMed  CAS  Google Scholar 

  • Saitoh O., Courchesne E., Egaas B., Lincoln A. J., and Schreibman L. (1995) Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 45, 317–324.

    PubMed  CAS  Google Scholar 

  • Saitoh O., Karns C. M., and Courchesne E. (2001) Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 124, 1317–1324.

    PubMed  CAS  Google Scholar 

  • Sandler A. D., Sutton K. A., DeWeese J., Girardi M. A., Sheppard V., and Bodfish J. W. (1999) Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N. Engl. J. Med. 341, 1801–1806.

    PubMed  CAS  Google Scholar 

  • Schumann C. M., Hamstra J., Goodlin-Jones B. L., Lotspeich L. J., Kwon H., Buonocore M. H., et al. (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392–6401.

    PubMed  CAS  Google Scholar 

  • Singh V. K. (1996) Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J. Neuroimmunol. 66, 143–145.

    PubMed  CAS  Google Scholar 

  • Sinha A., Nightingale J., West K. P., Berlanga-Acosta J., and Playford R. J. (2003) Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N. Engl. J. Med. 349, 350–357.

    PubMed  CAS  Google Scholar 

  • Sparks B. F., Friedman S. D., Shaw D. W., Aylward E. H., Echelard D., Artru A. A., et al. (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59, 184–192.

    PubMed  CAS  Google Scholar 

  • Swanson L. W. (1998) Structure of the Rat Brain, Elsevier Science B.V., Amsterdam, The Netherlands.

    Google Scholar 

  • Sweeten T. L., Bowyer S. L., Posey D. J., Halberstadt G. M., and McDougle C. J. (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112, e420.

  • Sweeten T. L., Posey D. J., Shankar S., and McDougle C. J. (2004) High nitric oxide production in autistic disorder: a possible role for interferon-gamma. Biol. Psychiatry 55, 434–437.

    PubMed  CAS  Google Scholar 

  • Szatmari P. (1999) Heterogeneity and the genetics of autism. J. Psychiatry Neurosci. 24, 159–165.

    PubMed  CAS  Google Scholar 

  • Teufel M., Luik G., and Niessen K. H. (1986) Gastrin, secretin, VIP and motilin in children with mucoviscidosis and Crohn disease. Monatsschr. Kinderheilkd. 134, 132–137.

    PubMed  CAS  Google Scholar 

  • Tinbergen N. and Tinbergen E. A., eds. (1983) Autistic Children, New Hope for a Cure, George, Allen and Unwin, London, UK.

    Google Scholar 

  • Thuesen B., Schaffalitzky de Muckadell O. B., Holst J. J., and Bahnsen M. (1987) The relationship of secretin and somatostatin levels in plasma to glucose administration and acid secretion during fasting. Am. J. Gastroenterol. 82, 723–726.

    PubMed  CAS  Google Scholar 

  • Tuchman R. and Rapin I. (2002) Epilepsy in autism. Lancet Neurol. 1, 352–358.

    PubMed  Google Scholar 

  • Uno H., Tarara R., Else J. G., Suleman M. A., and Sapolsky R. M. (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 9, 1705–1711.

    PubMed  CAS  Google Scholar 

  • Uvnas-Moberg K. (1998a) Antistress pattern induced by oxytocin. News Physiol. Sci. 13, 22–25.

    PubMed  CAS  Google Scholar 

  • Uvnas-Moberg K. (1997) Oxytocin linked antistress effects—the relaxation and growth response. Acta Physiol. Scand. Suppl. 640, 38–42.

    PubMed  CAS  Google Scholar 

  • Uvnas-Moberg K. (1998b) Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 23, 819–835.

    PubMed  CAS  Google Scholar 

  • Uvnas-Moberg K, Bjorkstrand E, Salmi P, Johansson C, Astrand M, and Ahlenius S. (1999) Endocrine and behavioral traits in low-avoidance Sprague-Dawley rats. Regul. Pept. 80, 75–82.

    PubMed  CAS  Google Scholar 

  • Vacher C. M., Fretier P., Creminon C., Calas A., and Hardin-Pouzet H. (2002) Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J. Neurosci. 22, 1513–1522.

    PubMed  CAS  Google Scholar 

  • Vargas D. L., Nascimbene C., Krishnan C., Zimmerman A. W., and Pardo C. A. (2004) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81.

    Google Scholar 

  • Wakefield A. J., Anthony A., Murch S. H., Thomson M., Montgomery S. M., Davies S., et al. (2000) Enterocolitis in children with developmental disorders. Am. J. Gastroenterol. 95, 2285–2295.

    PubMed  CAS  Google Scholar 

  • Weaver I. C., Cervoni N., Champagne F. A., D’Alessio A. C., Sharma S., Seckl J. R., et al. (2004) Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854.

    PubMed  CAS  Google Scholar 

  • Weaver I. C., Grant R. J., and Meaney M. J. (2002) Maternal behavior regulates long-term hippocampal expression of BAX and apoptosis in the offspring. J. Neurochem. 82, 998–1002.

    PubMed  CAS  Google Scholar 

  • Welch M. G. (1988) Holding Time, Simon and Schuster, New York.

    Google Scholar 

  • Welch M. G. (1989) Holding Time: How When Why. Proceedings of the First International Congress of Holding Therapy, Fireside, Regensberg, Germany.

  • Welch M. G. (1983a) Retrieval from autism through mother-child holding, in Autistic Children, New Hope for a Cure, Tinbergen, N. and Tinbergen, E. A., eds., George, Allen and Unwin, London, UK.

    Google Scholar 

  • Welch M. G. (1983b) Retrieval from autism through mother-child holding therapy, in Frontiers of Infant Psychiatry, Call, J. D., Galenson, E., and Tyson, R. L., eds., Basic Books, New York.

    Google Scholar 

  • Welch M. G. (1987) Toward prevention of developmental disorders. Pa. Med. 90, 47–52.

    PubMed  CAS  Google Scholar 

  • Welch M. G. and Chaput P. (1988) Mother-child holding therapy and autism. Pa. Med. 91, 33–38.

    PubMed  CAS  Google Scholar 

  • Welch M. G. Keune J. D., Welch-Horan T. B., and Ruggiero D. A. (2002) Secretin in autism. Society for Neuroscience Press Book. II, Washington, DC: pp. 572–574.

  • Welch M. G., Keune J. D., Welch-Horan T. B., Anwar N., Anwar M., Ruggiero D. A. (2003a) Secretin Activates Visceral Brain Regions in the Rat Including Areas Abnormal in Autism. Prog. #896.2 2002 Abstracts. Washington, DC: Society for Neuroscience Abstracts.

    Google Scholar 

  • Welch M. G., Keune J. D., Welch-Horan T. B., Anwar M., Anwar N., and Ruggiero D. A. (2003b) Secretin activates visceral brain regions in rat including areas abnormal in autism. Cell. Mol. Neurobiol. 23, 817–837.

    PubMed  CAS  Google Scholar 

  • Welch M. G., Welch-Horan T. B., Keune J. D., Anwar N., Anwar M., Ludwig R. J., and Ruggiero D. A. (2003c) Neurohormonal Resolution of Genetic and Acquired IBD and Secondary Brain Activation in Areas Abnormal in Autism. Prog. # 318.5 2003 Abstracts. Washington, DC: Society for Neuroscience Abstracts.

    Google Scholar 

  • Welch M. G., Welch-Horan T. B., Anwar M., Keune J. D., Anwar N., Ludwig R. J., and Ruggiero D. A. (2004a) Secretin: hypothalamic distribution and hypothesized neuroregulatory role in autism. Cell. Mol. Neurobiol. 24, 219–241.

    PubMed  CAS  Google Scholar 

  • Welch M. G., Welch-Horan T. B., Anwar M., Keune J. D., Anwar N., Ludwig R. J., et al. (2004b) Brain/gut peptides in developmental and inflammatory processes. FASEB Abstr. 833.19. 2004 Abstracts. Washington, DC: Federation of Affiliated Societies for Experimental Biology.

    Google Scholar 

  • Welch M. G., Welch-Horan T. B., Keune J. D., Anwar N., Anwar M., Ahmad A., et al. (2004c) Exogenous gut/brain neuropeptides in visceral/cerebral disease: relevance to IBD and autism? Prog. #761.16. Abstracts. Washington, DC: Society for Neuroscience Abstracts.

    Google Scholar 

  • Welch M. G., Welch-Horan T. B., Keune J. D., Anwar N., Anwar M., Ahmad A., et al. (2004d) Behavioral anatomy of intensive maternal nurturing in childhood disorders. Neuroscience Abstracts, 34th annual meeting.

  • Welch M. G., Welch-Horan T. B., Anwar M., Ludwig R. J., Power S. A., and Ruggiero D. A. (2004e) Behavioral anatomy of intensive maternal nurturing in childhood disorders. Prog. # 801.18 2004 Abstracts. Washington, DC: Society for Neuroscience Abstracts.

    Google Scholar 

  • Welch M.G., Northrup R. S., Welch-Horan T. B., Ludwig R. J., Austin C. A., Jacobson J. S. (2004f) Outcomes of prolonged parent-child embrace therapy among 102 children with behavioral disorders, in preparation.

  • Wen Z. and Fiocchi C. (2004) Inflammatory bowel disease: autoimmune or immune-mediated pathogenesis? Clin. Dev. Immunol. 11, 195–204.

    PubMed  Google Scholar 

  • White J. F. Intestinal pathophysiology in autism. (2003) Exp. Biol. Med. 228, 639–649.

    CAS  Google Scholar 

  • Windle R. J. Kershaw Y. M., Shanks N., Wood S.A., Lightman S. L., and Ingram C. D. (2004) Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J. Neurosci. 24, 2974–2982.

    PubMed  CAS  Google Scholar 

  • Winslow J. T. and Insel T. R. (2002) Neuroendocrine basis of social recognition. Curr. Opin. Neurobiol. 14, 248–253.

    Google Scholar 

  • Yirmiya N., Pilowsky T., Nemanov L., Arbelle S., Feinsilver T., Fried I., and Ebstein R. P. (2001) Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am. J. Med. Genet. 105, 381–386.

    PubMed  CAS  Google Scholar 

  • Zaninetti M. and Raggenbass M. (2000) Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur. J. Neurosci. 12, 3975–3984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha G. Welch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, M.G., Welch-Horan, T.B., Anwar, M. et al. Brain effects of chronic IBD in areas abnormal in autism and treatment by single neuropeptides secretin and oxytocin. J Mol Neurosci 25, 259–274 (2005). https://doi.org/10.1385/JMN:25:3:259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:3:259

Index Entries

Navigation