Skip to main content
Log in

Corticotropin-releasing factor mRNA and substance P receptor binding in the paraventricular hypothalamic nucleus, central nucleus of the amygdala, and locus coeruleus of sprague-dawley rats following restraint-induced stress

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The central mechanism of stress is poorly understood. This study was designed to examine how corticotropin-releasing factor (CRF) neurons, together with substance P (SP) receptors in the paraventricular hypothalamic nucleus (PVN), central nucleus of the amygdala (CeA), and locus coeruleus (LC), are affected by stress. Sprague-Dawley rats were restrained for 2 h. Animals were sacrificed by decapitation immediately after the 2-h restraint (the 0-h group) and 4, 24, or 48 h after restraint. Tissue sections were cut and collected on two sets of slides. Tissue sections of the first set were processed for studying CRF mRNA using 33P-labeled 60-mer oligonucleotide probe. Immediately adjacent tissue sections were processed for studying SP receptor-binding capacity using 125I-SP ligand. Quantitative results showed that CRF mRNAs in the PVN were significantly up-regulated at the 4- and 24-h stages, and they seemed not to be regulated by SP receptors. In addition, SP receptors in the CeA were up-regulated at the 24- and 48-h stages, whereas SP receptors were down-regulated in the LC at the same stages. In concert with the literature indicating SP antagonist’s antidepressive effects, up-regulated SP receptors in the CeA might contribute to the development of stress-related depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albeck D. S., McKittrick C. R., Blanchard D. C., Blanchard R. J., Nikulina J., McEwen B. S., and Sakai R. R. (1997) Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain. J. Neurosci. 17, 4895–4903.

    PubMed  CAS  Google Scholar 

  • Aston-Jones G. and Bloom F. E. (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1, 887–900.

    PubMed  CAS  Google Scholar 

  • Baby S., Nguyen M., Tran D., and Raffa R. B. (1999) Substance P antagonists: the next breakthrough in treating depression? J. Clin. Pharm. Ther. 24, 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Brody M. J. (1988) Central nervous system and mechanisms of hypertension. Clin. Physiol. Biochem. 6, 230–239.

    PubMed  CAS  Google Scholar 

  • Brown M. R., Koob G. F., and Rivier C., eds. (1991) Stress: Neurobiology and Neuroendocrinology, Marcel Dekker, New York.

    Google Scholar 

  • Buijs R. M., Geffard M., Pool C. W., and Hoorneman E. M. D. (1984) The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopic study. Brain Res. 323, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury G. M., Fujioka F., and Nakamura S. (2000) Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress. Brain Res. Bull. 52, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Conley R. K., Cumberbatch M. J., Mason G. S., Williamson D. J., Harrison T., Locker K., et al. (2002) Substance P (neurokinin 1) receptor antagonists enhance dorsal raphe neuronal activity. J. Neurosci. 22, 7730–7736.

    PubMed  CAS  Google Scholar 

  • Culman J., Kopin I. J., and Saavedra J. M. (1991) Regulation of corticotropin-releasing hormone and pituitary-adrenocortical response during acute and repeated stress in the rat. Endocrinol. Regul. 25, 151–158.

    CAS  Google Scholar 

  • Cunningham E. T. Jr. and Sawchenko P. E. (1988) Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J. Comp. Neurol. 274, 60–76.

    Article  PubMed  Google Scholar 

  • Curzon G. (1989) 5-Hydroxytryptamine and corticosterone in an animal model of depression. Prog. Nueropsychopharmacol. Biol. Psychiatry 13, 305–310.

    Article  CAS  Google Scholar 

  • da Costa A. P., Ma X. M., Ingram C. D., Lightman S. L., and Aguilera G. (2001) Hypothalamic and amygdaloid corticotropin-releasing hormone (CRH) and CRH receptor-1 mRNA expression in the stress-hyporesponsive late pregnant and early lactating rat. Mol. Brain Res. 91, 119–130.

    Article  PubMed  Google Scholar 

  • Davis M. (1992) The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353–375.

    Article  PubMed  CAS  Google Scholar 

  • De Souza E. B. and Van Loon G. R. (1982) Stress-induced inhibition of the plasma corticosterone response to subsequent stress in rats: a nonadrenocorticotropin-mediated mechanism. Endocrinology 110, 23–33.

    Article  PubMed  Google Scholar 

  • Duncko R., Kiss A., Skultetyova I., Rusnak M., and Jezova D. (2001) Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychneuroendocrinology 26, 77–89.

    Article  CAS  Google Scholar 

  • File S. E. (1997) Anxiolytic action of a neurokinin 1 receptor antagonist in the social interaction test. Pharmacol. Biochem. Behav. 58, 747–752.

    Article  PubMed  CAS  Google Scholar 

  • Gehlert D. R., Schober D. A., Hipskind P. A., Gitter B. D., and Howbert J. J. (1996) [3H]LY303870, a novel nonpeptide radioligand for the NK1 receptor. J. Neurochem. 66, 1095–1102.

    Article  PubMed  CAS  Google Scholar 

  • Givalois L., Arancibia S., and Tapia-Arancibia L. (2000) Concomitant changes in CRH mRNA level in rat hippocampus and hypothalamus following immobilization stress. Mol. Brain Res. 75, 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Glavin G. B., Pare W. P., Sandbak T., Bakke H. K., and Murison R. (1994) Restraint stress in biochemical research: an update. Neurosci. Biobehav. Rev. 18, 223–249.

    Article  PubMed  CAS  Google Scholar 

  • Gray T. S., Carney M. E., and Magnuson D. J. (1989) Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50, 433–446.

    PubMed  CAS  Google Scholar 

  • Gray T. S., O’Donohue L., and Magnuson D. J. (1986) Neuropeptide Y innervation of amygdaloid and hypothalamic neurons that project to the dorsal vagal complex in rat. Peptides 7, 341–249.

    Article  PubMed  CAS  Google Scholar 

  • Hand, G. A., Hewitt, C. B., Fulk, L. J., Stock, H. S. Carson, J. A. et al. (2002) Differential release of corticotropin-releasing hormone (CRH) in the amygdala during different types of stressors. Brain Res. 949, 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Harbuz M. S., Chalmers J., De Souza L., and Lightman S. L. (1993) Stress-induced activation CRF and c-fos mRNAs in the paraventricular nucleus are not affected by serotonin depletion. Brain Res. 609, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Hatalski C. G., Guirguis C., and Baram T. Z. (1998) Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat. J. Neuroendocrinol. 10, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs S. C., Li D. L., and Iyengar S. (2001) Corticotropin-releasing factor (CRF) or CRF binding-protein ligand inhibitor administration suppresses food intake in mice and elevates body temperature in rats. Brain Res. 900, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Hewson L., Hunt S., Rupniak N., and Smith D. (2000) “Reduced tyrosine hydroxylase immunoreactivity in the locus coeruleus of NK1 receptor knockout mice,” Tachykinins 2000, International Tachykinin Conference, La Grande Motte, France, P-67.

  • Hwang B. H.and Guntz J. M. (1997) Downregulation of corticotropin-releasing factor mRNA, but not vasopressin mRNA, in the paraventricular hypothalamic nucleus of rats following nutritional stress. Brain Res. Bull. 43, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Hwang B. H. and Wang G. M. (1993) A rapid and sensitive radioimmunohistochemical assay for quantitation of vasopressin in discrete brain regions with an anatomical resolution. J. Neurosci. Methods 50, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Hwang B. H., Froehlich J. C., Hwang W. S., Lumeng L., and Li T. K. (1998) More vasopressin mRNA in the paraventricular hypothalamic nucleus of alcohol-preferring rats and high alcohol-drinking rats, selectively bred for high alcohol preference. Alcohol. Clin. Exp. Res. 22, 664–669.

    Article  PubMed  CAS  Google Scholar 

  • Hwang B. H., Kunkler P. E., Lumeng L., and Li T. K. (1995) Calcitonin gene-related peptide (CGRP) content and CGRP receptor binding sites in discrete forebrain regions of alcohol-preferring vs. -nonpreferring rats, and high alcohol-drinking vs. low alcohol-drinking rats. Brain Res. 690, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Imaki T., Naruse M., Harada S., Chikada N., Imaki J., Onodera H., et al. (1996) Corticotropin-releasing factor up-regulates its own receptor mRNA in the paraventricular nucleus of the hypothalamus. Mol. Brain Res. 38, 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Kalin N. H., Takahashi L. K., and Chen F. L. (1994) Restraint stress increases corticotropin-releasing factor mRNA content in the amygdala and paraventricular nucleus. Brain Res. 656, 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Kash A. and Schioth H. B. (2000) Tonic inhibition of food intake during inactive phase is reversed by the melanocortin receptor antagonist into the paraventricular nucleus of the hypothalamus and central amygdala of the rat. Brain Res. 887, 460–464.

    Article  Google Scholar 

  • Katz R. J. (1982) Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol. Biochem. Behav. 16, 965–968.

    Article  PubMed  CAS  Google Scholar 

  • Koegler-Muly S. M., Owens M. J., Ervin G. N., Kilts C. D., and Nemeroff C. B. (1993) Potential corticotropin-releasing factor pathway in the rat brain as determined by bilateral electrolytic lesions of the central amygdaloid nucleus and the paraventricular nucleus of the hypothalamus. J. Neuroendocrinol. 5, 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Koob G.F. (1999a) Corticotropin-releasing factor, norepinephrine, and stress. Biol. Psychiatry 46, 1167–1180.

    Article  PubMed  CAS  Google Scholar 

  • Koob G.F. (1999b) The role of the striatopallidal and extended amygdala systems in drug addiction. Ann. N. Y. Acad. Sci. 877, 445–460.

    Article  PubMed  CAS  Google Scholar 

  • Kramer M.S., Cutler N., Feifhner J., Shrivastava R., Carman J. et al. (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281, 1640–1645.

    Article  PubMed  CAS  Google Scholar 

  • Kupfermann I (1991) Hypothalamus and limbic system; peptidergic neurons, homeostasis and emotional behavior, in Principles of Neural Science, 3rd ed. Kandel, E. R., Schwartz, J. H., and Jessell, T. M., eds., Elsevier, New York, pp. 735–749.

    Google Scholar 

  • Levine S. and Ursin H. (1991) What is stress? in Stress: Neurobiology and Neuroendocrinology, Brown, M.R., Koob, G. F., and Rivier, C., eds., Marcel Dekker, New York, pp. 3–21.

    Google Scholar 

  • Lightman S. L., Harbuz M. S., Knight R. A., and Chowdrey H. S. (1993) CRF mRNA in normal and stress conditions. Ann. N.Y. Acad. Sci. 697, 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Loewy A. D. and McKellar S. (1980) The neuroanatomical basis of central cardiovascular control. Fed. Proc. 39, 2495–2503.

    PubMed  CAS  Google Scholar 

  • Makino S. and Gold P. W. (1994) Effects of corticosterone on CRF mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Res. 657, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Manning B. H. and Mayer D. J. (1995) The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test. J. Neurosci. 15, 8199–8213.

    PubMed  CAS  Google Scholar 

  • Maubach K. A., Rupniak N. M., Kramer M. S., and Hill R. G. (1999) Novel strategies for pharmacotherapy of depression. Curr. Opin. Chem. Biol. 3, 481–488.

    Article  PubMed  CAS  Google Scholar 

  • McBride W. J. (2002) Central nucleus of the amygdala and the effects of alcohol and alcohol-drinking behavior in rodents. Pharmacol. Biochem. Behav. 71, 509–515.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S. and Magarinos A. M. (1997) Stress effects on morphology and function of the hippocampus. Ann. N.Y. Acad. Sci. 821, 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson S. D. and McEwen B. S. (1991) Autoradiographic analysis of the effects of restraint-induced stress on 5-HT1A, 5-HT1C and 5-HT2 receptors in the dorsal hippocampus of male and female rats. Neuroendocrinology 54, 454–461.

    PubMed  CAS  Google Scholar 

  • Merchenthaler I., Vigh S., Petrusz P., and Schally A. V. (1982) Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am. J. Anat. 165, 385–396.

    Article  PubMed  CAS  Google Scholar 

  • Miyata K., Ito H., and Fukudo S. (1998) Involvement of the 5-HT3 receptor in CRF-induced defecation in rats. Am. J. Physiol. 274, G827-G831.

    PubMed  CAS  Google Scholar 

  • Okano S., Nagaya H., Ikeura Y., Natsugari H., and Inatomi N. (2001) Effects of TAK-637, a novel neurokinin-1 receptor antagonist, on colonic function in vivo. J. Pharmacol. Exp. Ther. 298, 559–564.

    PubMed  CAS  Google Scholar 

  • Palkovits M., Brownstein M. J., and Vale W. (1985) Distribution of corticotropin-releasing factor in rat brain. Fed. Proc. 44, 215–219.

    PubMed  CAS  Google Scholar 

  • Palkovits M. (2000) Stress-induced expression of co-localized neuropeptides in hypothalamic and amygdaloid neurons. Eur. J. Pharmacol. 405, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Papp M., Vassout A., and Gentsch C. (2000) The NK1 receptor antagonist NKP608 has an antidepressant-like effect in the chronic mild stress model of depression in rats. Behav. Brain Res. 115, 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Pare W. P. and Redei E. (1993) Depressive behavior and stress ulcer in Wistar Kyoto rats. J. Physiol. 87, 229–238.

    CAS  Google Scholar 

  • Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B., and Strickland, S. (2003) Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat. Neurosci. 6, 168–174.

    Article  PubMed  CAS  Google Scholar 

  • Pepin M. C., Pothier F., and Barden N. (1992) Antidepressant drug action in a transgenic mouse model of the endocrine changes seen in depression. Mol. Pharmacol. 42, 991–995.

    PubMed  CAS  Google Scholar 

  • Pinnock S. B. and Herbert J. (2001) Corticosterone differentially modulates expression of corticotropin releasing factor and arginine vasopressin mRNA in the hypothalamic paraventricular nucleus following either acute or repeated restraint stress. Eur. J. Pharmacol. 13, 576–584.

    CAS  Google Scholar 

  • Plotsky P. M. and Meaney M. J. (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol. Brain Res. 18, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Pucilowski O., Overstreet D. H., Rezvani A. H., and Janowsky D. S. (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol. Behav. 54, 1215–1220.

    Article  PubMed  CAS  Google Scholar 

  • Quirion R. and Dam T. V. (1986) Ontogeny of substance P receptor binding sites in rat brain. J. Neurosci. 6, 2187–2199.

    PubMed  CAS  Google Scholar 

  • Ranga K. and Krishnan R. (2002) Clinical experience with substance P receptor (NK1) antagonists in depression. J. Clin. Psychiatry 63(Suppl. 11), 25–29.

    PubMed  CAS  Google Scholar 

  • Richter R. M., Zorrilla E. P., Basso A. M., Koob F. G., and Weiss F. (2000) Altered amygdalar CRF release and increased anxiety-like behavior in Sardinian alcohol-preferring rats: a microdialysis and behavioral study. Alcohol. Clin. Exp. Res. 24, 1765–1772.

    Article  PubMed  CAS  Google Scholar 

  • Rothman R. B., Herkenham M., Pert C. B., Liang T., and Cascieri M. A. (1984) Visualization of rat brain receptors for the neuropeptide, substance P. Brain Res. 309, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko P. E. (1991) The final common path, in Stress: Neurobiology and Neuroendocrinology, Brown, M. R., Koob, G. F., and Rivier, C., eds., Marcel Dekker, New York, pp. 55–71.

    Google Scholar 

  • Suemaru S., Hashimoto K., and Ota Z. (1985) Brain corticotropin-releasing factor (CRF) and catecholamine responses in acutely stressed rats. Endocrinol. Japonica 32, 709–718.

    CAS  Google Scholar 

  • Suemaru S., Hashimoto K, Hattori T., Inoue H. Kageyama J., and Ota Z. (1986) Starvation-induced changes in rat brain corticotropin-releasing factor (CRF) and pituitary-adrenocortical response. Life Sci. 39, 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  • Swanson L. W., Sawchenko P. E., Rivier J., and Vale W. W. (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36, 165–186.

    PubMed  CAS  Google Scholar 

  • Ungerstedt U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl. 367, 1–48.

    PubMed  CAS  Google Scholar 

  • Van Bockstaele E. J., Bajic D., Proudfit H., and Valentino R. J. (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol. Behav. 73, 273–283.

    Article  PubMed  Google Scholar 

  • Viau V. and Sawchenko P. E. (2002) Hypophysiotrophic neurons of the paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs. repeated restraint stress: rapid publication. J. Comp. Neurol. 445, 293–307.

    Article  PubMed  Google Scholar 

  • Volz H. P., Rehben G., Trieoel J., Knuepfer M. M., Stumpf H., and Stock G. (1990) Afferent connections of the nucleus centralis amygdalae. Anat. Embryol. 181, 177–194.

    Article  PubMed  CAS  Google Scholar 

  • Weiner H. (1991) Behavioral biology of stress and psychosomatic medicine, in Stress: Neurobiology and Neuroendocrinology, Brown, M. R., Koob, G. F., and Rivier, C., eds., Marcel Dekker, New York, pp. 23–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang H. Hwang.

Additional information

Parts of the results have been presented at the summer neuropeptide conference (June 8–12, 2003, Montauk, NY) as P-37 (Neuropeptides [2003] 37, 192).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B.H., Katner, J. & Iyengar, S. Corticotropin-releasing factor mRNA and substance P receptor binding in the paraventricular hypothalamic nucleus, central nucleus of the amygdala, and locus coeruleus of sprague-dawley rats following restraint-induced stress. J Mol Neurosci 25, 239–250 (2005). https://doi.org/10.1385/JMN:25:3:239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:3:239

Index Entries

Navigation