Skip to main content
Log in

Effects of RNAi-mediated silencing of PEN-2, APH-1a, and nicastrin on wild-type vs FAD mutant forms of presenilin 1

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The γ-secretase complex consists of PS1/PS2, nicastrin, APH-1a, and PEN-2. PS1 undergoes endoproteolytic processing to yield two fragments: PS1-NTF and PS1-CTF. Changes in PEN-2 levels have been shown previously to affect the endoproteolytic processing of wild-type (wt)-PS1. However, the effects of PEN-2 on the proteolytic processing of familial Alzheimer’s disease (FAD) mutant forms of PS1 have not yet been reported. To determine whether PEN-2 affects the proteolytic processing of mutant PS1 in the same manner as that of wt-PS1, we established RNA interference (RNAi) for PEN-2 in H4 human neuroglioma cells stably transfected to express wt or FAD mutant forms of PS1 including L286V, A246E, and that lacking exon 9 (Δ9). As expected, in H4 cells expressing wt-PS1, RNAi for PEN-2 increased levels of PS1-FL and attenuated PS1 endoproteolysis. Likewise, in cells expressing PS1 with the FAD missense mutations, L286V and A246E, RNAi for PEN-2 increased PS1-FL and reduced PS1 endoproteolysis. However, in H4 cells stably transfected to express the FAD-linked Δ9 mutation (PS1 lacking exon 9), RNAi for PEN-2 did not increase but, instead, decreased PS1-FL. In contrast, RNAi for nicastrin and APH-1a decreased PS1-FL in H4 cells expressing either wt-PS1 or Δ9-PS1. In summary, the metabolism of wt-PS1 and FAD-linked Δ9-PS1 is specifically and differentially affected by loss of function of PEN-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • De Strooper B. (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 38, 9–12.

    Article  PubMed  Google Scholar 

  • De Strooper B., Beullens M., Contreras B., Levesque L., Craessaerts K., Cordell B., et al. (1997) Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer’s disease-associated presenilins. J. Biol. Chem. 272, 3590–3598.

    Article  PubMed  Google Scholar 

  • Doan A., Thinakaran G., Borchelt D. R., Slunt H. H., Ratovitsky T., Podlisny M., et al. (1996) Protein topology of presenilin 1. Neuron 17, 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  • Edbauer D., Winkler E., Haass C., and Steiner H. (2002) Presenilin and nicastrin regulate each other and determine amyloid beta-peptide production via complex formation. Proc. Natl. Acad. Sci. USA 99, 8666–8671.

    PubMed  CAS  Google Scholar 

  • Edbauer D., Winkler E., Regula J. T., Pesold B., Steiner H., and Haass C. (2003) Reconstitution of gamma-secretase activity. Nat. Cell Biol. 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Fraering P. C., LaVoie M. J., Ye W., Ostaszewski B. L., Kimberly W. T., Selkoe D. J., and Wolfe M. S. (2004) Detergent-dependent dissociation of active gamma-secretase reveals an interaction between Pen-2 and PS1-NTF and offers a model for subunit organization within the complex. Biochemistry 43, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Francis R., McGrath G., Zhang J., Ruddy D. A., Sym M., Apfeld J., et al. (2002) aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of beta APP, and presenilin protein accumulation. Dev. Cell 3, 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y., Chen F., Sanjo N., Kawarai T., Hasegawa H., Duthie M., et al. (2003) APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin.nicastrin complexes. J. Biol. Chem. 278, 7374–7380.

    Article  PubMed  CAS  Google Scholar 

  • Kim S. H., Ikeuchi T., Yu C. and Sisodia S. S. (2003) Regulated hyperaccumulation of presenilin-1 and the “gamma-secretase” complex. Evidence for differential intramembranous processing of transmembrane subatrates. J. Biol. Chem. 278, 33,992–34,002.

    CAS  Google Scholar 

  • Kim T. W., Pettingell W. H., Jung Y. K., Kovacs D. M., and Tanzi R. E. (1997) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly W. T., LaVoie M. J., Ostaszewski B. L., Ye W., Wolfe M. S., and Selkoe D. J. (2003a) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA 100, 6382–6387.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly W. T., Esler W. P., Ye W., Ostaszewski B. L., Gao J., Diehl T., et al. (2003b) Notch and the amyloid precursor protein are cleaved by similar gamma-secretase(s). Biochemistry 42, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D. M., Mancini R., Henderson J., Na S. J., Schmidt S. D., Kim T. W., and Tanzi R. E. (1999) Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer’s disease mutations in human neuroglioma cells. J. Neurochem. 73, 2278–2285.

    Article  PubMed  CAS  Google Scholar 

  • LaVoie M. J., Fraering P. C., Ostaszewski B. L., Ye W., Kimberly W. T., Wolfe M. S., and Selkoe D. J. (2003) Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J. Biol. Chem. 278, 37,213–37,222.

    CAS  Google Scholar 

  • Lee S. F., Shah S., Li H., Yu C., Han W., and Yu G. (2002) Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J Biol Chem 277, 45,013–45,019.

    CAS  Google Scholar 

  • Li X. and Greenwald I. (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17, 1015–1021.

    Article  PubMed  CAS  Google Scholar 

  • Li Y. M., Lai M. T., Xu M., Huang Q., DiMuzio-Mower J., Sardana M. K., et al. (2000) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97, 6138–6143.

    Article  PubMed  CAS  Google Scholar 

  • Luo W. J., Wang H., Li H., Kim B. S., Shah S., Lee H. J., et al. (2003) PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J. Biol. Chem. 278, 7850–7854.

    Article  PubMed  CAS  Google Scholar 

  • Morais V. A., Crystal A. S., Pijak D. S., Carlin D., Costa J., Lee V. M., and Doms R. W. (2003) The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the gamma-secretase complex. J. Biol. Chem. 278, 43,284–43,291.

    Article  CAS  Google Scholar 

  • Nyabi O., Bentahir M., Horre K., Herreman A., Gottardi-Littell N., Van Broeckhoven C., et al. (2003) Presenilins mutated at Asp-257 or Asp-385 restore Pen-2 expression and Nicastrin glycosylation but remain catalytically inactive in the absence of wild type Presenilin. J. Biol. Chem. 278, 43,430–43,436.

    Article  CAS  Google Scholar 

  • Perez-Tur J., Froelich S., Prihar G., Crook R., Baker M., Duff K., et al. (1995) A mutation in Alzheimer’s disease destroying a splice acceptor site in the presenilin-1 gene. Neuroreport 7, 297–301.

    PubMed  CAS  Google Scholar 

  • Prokop S., Shirotani K., Edbauer D., Haass C., and Steiner H. (2004) Requirement of PEN-2 for Stabilization of the Presenilin N-/C-terminal Fragment Heterodimer within the γ-Secretase Complex. J. Biol. Chem. 279, 23,255–23,261.

    Article  CAS  Google Scholar 

  • Ratovitski T., Slunt H. H., Thinakaran G., Price D. L., Sisodia S. S., and Borchelt D. R. (1997) Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J. Biol. Chem. 272, 24,536–24,541.

    Article  CAS  Google Scholar 

  • Shirotani K., Edbauer D., Capell A., Schmitz J., Steiner H., and Haass C. (2003) Gamma-secretase activity is associated with a conformational change of nicastrin. J. Biol. Chem. 278, 16,474–16,477.

    Article  CAS  Google Scholar 

  • Steiner H., Winkler E., Edbauer D., Prokop S., Basset G., Yamasaki A., et al. (2002) PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem. 277, 39,062–39,065.

    Article  CAS  Google Scholar 

  • Takasugi N., Tomita T., Hayashi I., Tsuruoka M., Niimura M., Takahashi Y., et al. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi R. E. and Bertram L. (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32, 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G. (1999) The role of presenilins in Alzheimer’s disease. J. Clin. Invest. 104, 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G., Borchelt D. R., Lee M. K., Slunt H. H., Spitzer L., Kim G., et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Xie Z., Moir, R., Romano, D. M., Tesco, G., Kovacs, D., and Tanzi, R. (2004) Hypocapnia Induces Caspase-3 Activation and Increases A-beta Production. Neurodegenerative Disease 1, 29–37.

    Article  CAS  Google Scholar 

  • Yu G., Nishimura M., Arawaka S., Levitan D., Zhang L., Tandon A., et al. (2000) Nicastrin modulates presenilinmediated notch/glp-1 signal transduction and beta APP processing. Nature 407, 48–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolph E. Tanzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Romano, D.M. & Tanzi, R.E. Effects of RNAi-mediated silencing of PEN-2, APH-1a, and nicastrin on wild-type vs FAD mutant forms of presenilin 1. J Mol Neurosci 25, 67–77 (2005). https://doi.org/10.1385/JMN:25:1:067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:1:067

Index Entries

Navigation