Skip to main content
Log in

A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy

  • Original Article
  • Receptors And Channels
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Childhood absence epilepsy is an idiopathic, generalized, nonconvulsive epilepsy with a multifactorial genetic etiology. The KCNK9 gene coding for the TASK3 (Twik-like acid-sensitive K +) channel is present on chromosome 8 at position 8q24, a locus that has shown positive linkage to the human absence epilepsy phenotype. Sequencing of the KCNK9 gene in the genetic absence epilepsy rats from Strasbourg (GAERS), a well established genetic model of this disease, reveals an additional alanine residue in a polyalanine tract within the C-terminal intracellular domain. This additional alanine is absent in the inbred nonepileptic control (NEC) strain, Wistar, and Wistar albino Glaxo strain bred in Rijswijk, another inbred rat model of absence epilepsy. Expression of the mutant channel in CHO cells produces a K+ current that is blocked by acidic pH and millimolar concentrations of barium or ruthenium red and is not different from the wild-type channel. In brain slices, thalamic neurons display a prominent pH-sensitive tonic K+ current, but no difference was observed between GAERS and NEC or Wistar rats. Ruthenium red had no effect in cortical, reticular thalamic, or sensory thalamic neurons in either GAERS or NEC, indicating that the TASK3 homodimer is not present in these structures. Twik-like acid-sensitive K+ (TASK3) channels, therefore, are probably associated with TASK1 to form ruthenium red-insensitive heterodimers in these neurons. Finally, no difference was found between GAERS and NEC rats in the modulation of the leak K+ current following activation of muscarinic receptors. These studies describe the first mutation found in a genetic model of absence epilepsy. Although our experiments showed no difference in the leak K+ current between GAERS and NEC rats, further work is needed to ascertain whether this mutation contributes to the generation of absence seizures, possibly by mechanisms related to the expansion of the polyalanine run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbuti A., Ishii S., Shimizu T., Robinson R. B., and Feinmark S. J. (2002) Block of the background K(+) channel TASK-1 contributes to arrhythmogenic effects of plateletactivating factor. Am. J. Physiol. Heart Circ. Physiol. 282, H2024-H2030.

    PubMed  CAS  Google Scholar 

  • Brown L. Y. and Brown S. A. (2004) Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet. 20, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Chapman C. G., Meadows H. J., Godden R. J., Campbell D. A., Duckworth M., Kelsell R. E., et al. (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res. Mol. Brain Res. 82, 74–83.

    Article  PubMed  CAS  Google Scholar 

  • Chemin J., Girard C., Duprat F., Lesage F., Romey G., and Lazdunski M. (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J. 22, 5403–5411.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Coenen A. M., Drinkenburg W. H., Inoue M., and van L. E. L. (1992) Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res. 12, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli V. and Leresche N. (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G. and Enyedi P. (2002a) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277, 5426–5432.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G. and Enyedi P. (2002b) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol. Endocrinol. 16, 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G. and Enyedi P. (2003) Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol. Pharmacol. 63, 646–652.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G., Fischer T., Spat A., Lesage F., and Enyedi P. (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol. Endocrinol. 14, 863–874.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G., Petheo G. L., Spat A., and Enyedi P. (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am. J. Physiol. Cell. Physiol. 281, C700–708.

    PubMed  CAS  Google Scholar 

  • Danober L., Deransart C., Depaulis A., Vergnes M., and Marescaux C. (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57.

    Article  PubMed  CAS  Google Scholar 

  • Devinsky O., Paraiso J. O., Rosenberg A., and Nordli D. R. (1997) Procedures in patients with epilepsy, in Epilepsy: A Comprehensive Textbook, vol. 2, Engel, J., Jr., and Pedley, T. A., eds., Lippincott-Raven, Philadelphia, PA, pp. 1977–1987.

    Google Scholar 

  • Dutuit M., Didier-Bazes M., Vergnes M., Mutin M., Conjard A., Akaoka H., et al. (2000) Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 32, 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Edwards F. A., Konnerth A., Sakmann B., and Takahashi T. (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflüg. Arch. Eur. J. Physiol. 414, 600–612.

    Article  CAS  Google Scholar 

  • Fong G. C., Shah P. U., Gee M. N., Serratosa J. M., Castroviejo I. P., Khan S., et al. (1998) Childhood absence epilepsy with tonic-clonic seizures and electroencephalogram 3-4-Hz spike and multispike-slow wave complexes: linkage to chromosome 8q24. Am. J. Hum. Genet. 63, 1117–1129.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S. A., Bockenhauer D., O’Kelly I., and Zilberberg N. (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Han J., Truell J., Gnatenco C., and Kim D. (2002) Characterization of four types of background potassium channels in rat cerebellar granule neurons. J. Physiol. 542, 431–444.

    Article  PubMed  CAS  Google Scholar 

  • Harks E. G., Camina J. P., Peters P. H., Ypey D. L., Scheenen W. J., van Scheenen Z. E. J., and Theuvenet A. P. (2003) Besides affecting intracellular calcium signaling, 2-APB reversibly blocks gap junctional coupling in confluent monolayers, thereby allowing measurement of singlecell membrane currents in undissociated cells. FASEB J. 17, 941–943.

    PubMed  CAS  Google Scholar 

  • Heginbotham L., Lu Z., Abramson T., and MacKinnon R. (1994) Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Holter J. L., Humphries A., Crunelli V., and Carter D. A. (2001) Optimisation of methods for selecting candidate genes from cDNA array screens: application to rat brain punches and pineal. J. Neurosci. Methods 112, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Kananura C., Sander T., Rajan S., Presig-Muller R., Grzeschik K. H., Daut J., et al. (2002) Tandem pore domain K(+)-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. Am. J. Med. Genet. 114, 227–229.

    Article  PubMed  Google Scholar 

  • Karschin C., Wischmeyer E., Preisig-Muller R., Rajan S., Derst C., Grzeschik K. H., et al. (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol. Cell. Neurosci. 18, 632–648.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y., Bang H., and Kim D. (2000) TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275, 9340–9347.

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen I., Zanzouri M., Honoré E., Duprat F., Ehrengruber M. U., Lazdunski M., and Patel A. J. (2003) K+-dependent cerebellar granule neuron apoptosis: role of TASK leak K+ channels. J. Biol. Chem.

  • Lesage F. and Lazdunski M. (2000) Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. Renal Physiol. 279, F793–801.

    PubMed  CAS  Google Scholar 

  • Marescaux C., Vergnes M., and Depaulis A. (1992) Genetic absence epilepsy in rats from Strasbourg—a review. J. Neural Transm. Suppl. 35, 37–69.

    PubMed  CAS  Google Scholar 

  • Meadows H. J. and Randall A. D. (2001) Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40, 551–559.

    Article  PubMed  CAS  Google Scholar 

  • Medhurst A. D., Rennie G., Chapman C. G., Meadows H., Duckworth M. D., Kelsell R. E., et al. (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res. Mol. Brain Res. 86, 101–14.

    Article  PubMed  CAS  Google Scholar 

  • Meuth S. G., Budde T., Kanyshkova T., Broicher T., Munsch T., and Pape H. C. (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J. Neurosci. 23, 6460–6469.

    PubMed  CAS  Google Scholar 

  • Millar J. A., Barratt L., Southan A. P., Page K. M., Fyffe R. E. W., Robertson B., and Mathie A. (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 3614–3618.

    Article  PubMed  CAS  Google Scholar 

  • Mouritzen-Dam A., Moller A., Scheel-Kruger J., Jensen L. H., Marescaux C., and Vergnes M. (1996) Total number of neurons in the ventro-lateral/posterior thalamic nuclei in a genetic petit mal-like rat strain. Epilepsy Res. Suppl. 12, 303–307.

    PubMed  CAS  Google Scholar 

  • Mu D., Chen L., Zhang X., See L. H., Koch C. M., Yen C., et al. (2003) Genomicamplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Munsch T. and Pape H. C. (1999) Modulation of the hyperpolarization-activated cation current of rat thalamic relay neurones by intracellular pH. J. Physiol. (Lond.) 519, 493–504.

    Article  CAS  Google Scholar 

  • Nehlig A., Vergnes M., Boyet S., and Marescaux C. (1998a) Metabolic activity is increased in discrete brain regions before the occurrence of spike-and-wave discharges in weanling rats with genetic absence epilepsy. Brain Res. Dev. Brain Res. 108, 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A., Vergnes M., Boyet S., and Marescaux C. (1998b) Local cerebral glucose utilization in adult and immature GAERS. Epilepsy Res. 32, 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Panayiotopoulos C. P. (1997) Absence epilepsies, in Epilepsy: A Comprehensive Textbook, vol. 3, Engel, J., Jr., and Pedley, T. A., eds., Lippincott-Raven, Philadelphia, PA, pp. 2327–2346.

    Google Scholar 

  • Patel A. J. and Honoré E. (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci. 24, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Pei L., Wiser O., Slavin A., Mu D., Powers S., Jan L. Y., and Hoey T. (2003) Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc. Natl. Acad. Sci. U. S. A. 100, 7803–7807.

    Article  PubMed  CAS  Google Scholar 

  • Perrier J. F., Alaburda A., and Hounsgaard J. (2003) 5-HT1A receptors increase excitability of spinal motoneurons by inhibiting a TASK-1-like K+ current in the adult turtle. J. Physiol. 548, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Rajan S., Preisig-Muller R., Wischmeyer E., Nehring R., Hanley P. J., Renigunta V., et al. (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol. 545, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Rajan S., Wischmeyer E., Xin Liu G., Preisig-Muller R., Daut J., et al. (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J. Biol. Chem. 275, 16,650–16,667.

    CAS  Google Scholar 

  • Sabers A., Moller A., Scheel-Kruger J., and Mouritzen D. A. (1996) No loss in total neuron number in the thalamic reticular nucleus and neocortex in the genetic absence epilepsy rats from Strasbourg. Epilepsy Res. 26, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Sirois J. E., Lynch C. III, and Bayliss D. A. (2002) Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J. Physiol. (Lond.) 541, 717–729.

    Article  CAS  Google Scholar 

  • Steriade M., Contreras D., and Amzica F. (1994) Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci. 17, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y., Morita R., Amano K., Fong C. Y., Shah P. U., Castroviejo I. P., et al. (2000) Childhood absence epilepsy in 8q24: refinement of candidate region and construction of physical map. Genomics 68, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Szabadkai G., Varnai P., and Enyedi P. (1999) Selective inhibition of potassium-stimulated rat adrenal glomerulosa cells by ruthenium red. Biochem. Pharmacol. 57, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Talley E. M. and Bayliss D. A. (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem. 277, 17733–17742.

    Article  PubMed  CAS  Google Scholar 

  • Talley E. M., Lei Q., Sirois J. E., and Bayliss D. A. (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25, 399–410.

    Article  PubMed  CAS  Google Scholar 

  • Talley E. M., Solorzano G., Lei Q., Kim D., and Bayliss D. A. (2001) Cns distribution of members of the two-poredomain (KCNK) potassium channel family. J. Neurosci. 21, 7491–7505.

    PubMed  CAS  Google Scholar 

  • Vergnes M., Marescaux C., Micheletti G., Reis J., Depaulis A., Rumbach L., and Warter J. M. (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci. Lett. 33, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Washburn C. P., Sirois J. E., Talley E. M., Guyenet P. G., and Bayliss D. A. (2002) Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci. 22, 1256–1265.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jethro Holter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holter, J., Carter, D., Leresche, N. et al. A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci 25, 37–51 (2005). https://doi.org/10.1385/JMN:25:1:037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:1:037

Index Entries

Navigation