Skip to main content
Log in

Mitochondrial enzymes in schizophrenia

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The responses of brain metabolism and blood flow to stimulation are diminished in the dorsolateral prefrontal cortexes (DLPFCs) of schizophrenic patients. Reductions in mitochondrial enzymes underlie diminished metabolism in several neurodegenerative diseases. Thus, we tested whether reductions in selected mitochondrial enzymes could underlie the changes in schizophrenia. The activities of the pyruvate dehydrogenase complex (PDHC), aconitase, isocitrate dehydrogenase (ICDH), and the α-ketoglutarate dehydrogenase complex (KGDHC) were determined on DLPFCs from patients with schizophrenia (n=26) and normal nonpsychiatric disease controls (n=13). The enzyme activities (mU/mg protein; mean ± SEM) were similar (values for controls and schizophrenic patients, respectively) for PDHC (11.36 ± 1.5, 10.33 ± 0.8), aconitase (1.06 ± 0.1, 1.35 ± 0.2), ICDH (31.70 ± 2.7, 32.00 ± 2.6), and KGDHC (2.62 ± 0.4, 3.09 ± 0.3). Separate analyses of the patients matched for age or postmortem interval gave similar conclusions. Cognitive dementia rating scores correlated poorly with activities of PDHC, aconitase, ICDH, and KGDHC. In one schizophrenic patient, activity of aconitase was undetectable, and in two others KGDHC activity was very low. Both had low activities of ICDH. A reduced activity of these enzymes in a subgroup is consistent with other data, suggesting that some patients with schizophrenia have abnormalities in brain mitochondria. However, in schizophrenia, unlike a number of neurodegenerative diseases, reductions in the activities of the key mitochondrial enzymes KGDHC and PDHC are not frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai C., Fernandez E., Yang H., and Chen R. (1999) Purification and stabilization of a monomeric isocitric dehydrogenase from corynebacterium glutamicum. Protein Expr. Purif. 15, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Berman K. F., Torrey E. F., Daniel D. G., and Weinberger D. R. (1992) Regional cerebral blood flow in monozygotic twins discordant and concordant for schizophrenia. Arch. Gen. Psychiatry 49, 927–934.

    PubMed  CAS  Google Scholar 

  • Blackwood D. H., Muir W. J., Brookes A. J., Gyllensten U., and Jazin E. E. (1997) Mitochondrial sequence variants in patients with schizophrenia. Eur. J. Hum. Genet. 5, 406–412.

    PubMed  Google Scholar 

  • Blass J. P. (2002) Glucose/mitochondria in neurological conditions. Int. Rev. Neurobiol. 51, 325–376.

    PubMed  CAS  Google Scholar 

  • Bray N. J. and Owen M. J. (2001) Searching for schizophrenia genes. Trends. Mol. Med. 7(4), 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Cavelier L., Jazin E. E., Eriksson I., Prince J., Bave U., Oreland L., and Gyllensten U. (1995) Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 29(1), 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Fell D. (1997) Understanding the Control of Metabolism, Portland Press, London, UK, pp. 1–301.

    Google Scholar 

  • Fucetola R., Newcomer J. W., Craft S., and Melson A. K. (1999) Age and dose dependent glucose-induced increases in memory and attention in schizophrenia. Psychiatry. Res. 88, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E., Blass J. P., Huang H. M., and Freeman G. B. (1991) The cellular basis of delirium and its relevance to age related disorders including Alzheimer’s disease. Int. Psychogeriatr. 3(2), 373–395.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E., Haroutunian H., Zhang H., Park L. C. H., Shi Q., Lesser M., Mohs R. C., et al. (2000a) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann. Neurol. 48, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E., Park L. C. H., Sheu K. R., Blass J. P., and Calingasan N. Y. (2000b) The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem. Int. 36, 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Gibson G. E., Zhang H., Sheu K. F. R., Bogdanovich N., Lindsay J. G., Lannfelt L., et al. (1998) α-Ketoglutarate dehydrogenase complex in Alzheimer brains bearing the A-PP670/671 mutation. Ann. Neurol. 44, 679–681.

    Article  Google Scholar 

  • Gluck M. R., Thomas R. G., Davis K. L., and Haroutunian V. (2002) Increased phosphate-activated glutaminase and glutamic acid decarboxylase activities in dorsolateral prefrontal cortex of aged schizophrenics: implications for altered glutamate and GABA metabolism in schizophrenia. Am. J. Psychiatry 159, 1165–1173.

    Article  PubMed  Google Scholar 

  • Gur R. E., Mozley P. D., Resnick S. M., Mozley L. H., Shtasel D. L., Gallacher F., et al. (1995) Resting cerebral glucose metabolism in first-episode and previously treated patients with schizophrenia relates to clinical features. Arch. Gen. Psychiatry 52, 657–667.

    PubMed  CAS  Google Scholar 

  • Hakak Y., Walker J. R., Li C., Wong W. H., Davis K. L., Buxbaum J. D., et al. (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98(8), 4746–4751.

    Article  PubMed  CAS  Google Scholar 

  • Haroutunian V., Davidson M., Kanof P. D., Perl D. P., Powchik P., Losonczy M., et al. (1994) Cortical cholinergic markers in schizophrenia. Schizophr. Res. 12, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Holcomb H. H., Lahti A. C., Medoff D. R., Weiler M., Dannals R. F., and Tamminga C. A. (2000) Brain activation patterns in schizophrenic and comparison volunteers during a matched-performance auditory recognition task. Am. J. Psychiatry 157, 1634–1645.

    Article  PubMed  CAS  Google Scholar 

  • Hughes C. P., Berg L., Danziger W. L., Coben L. A., and Martin R. L. (1982) A new clinical scale for the staging of dementia. Br. J. Psychiatry 140, 566–572.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen L. K., Hamburger S. D., Van Horn J. D., Vaituzis A. C., McKenna K., Frazier J. A., et al. (1997) Cerebral glucose metabolism in childhood onset schizophrenia. Psychiatry Res. 75, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H., Blass J. P., and Gibson G. E. (1982) Studies on the pyruvate dehydrogenase complex in brain with the arylamine acetyltransferase-coupled assay. J. Neurochem. 38, 1627–1636.

    Article  PubMed  CAS  Google Scholar 

  • Kung L. and Roberts R. C. (1999) Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31(1), 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Kunz W. S., Kuznetsov A. V., Clark J. F., Tracey I., and Elger C. E. (1999) Metabolic consequences of the cytochrome c oxidase deficiency in brain of copper-deficient Mo (vbr) mice. J. Neurochem. 72(4), 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Maurer I., Zierz S., and Moller H. (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr. Res. 48(1), 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Morton R. I., Ikle D., and White C. W. (1998) Loss of lung mitochondrial activity due to hyperoxia in bronchopulmonary dysplasia in primates. Am. J. Physiol, Lung Cell. Mol. Physiol. 274(1), 1–15.

    Google Scholar 

  • Park L. C. H., Zhang H., Sheu K. F. R., Calingasan N. Y., Kristal B. S., Lindsay J. G., and Gibson G. E. (1999) Metabolic impairments induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J. Neurochem. 72, 1948–1958.

    Article  PubMed  CAS  Google Scholar 

  • Powchik P., Davidson M., Haroutunia V., Gabriel S. M., Purohit D. P., Perl D. P., et al. (1998) Postmortem studies in schizophrenia. Schizophr. Bull. 24, 325–341.

    PubMed  CAS  Google Scholar 

  • Prince J. A., Blennow K., Gottfries C. G., Karlsson I., and Oreland L. (1999) Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 21(3), 372–379.

    Article  PubMed  CAS  Google Scholar 

  • Purohit D. P., Perl D. P., Haroutunian V., Powchik P., Davidson M., and Davis K. L. (1998) Alzheimer disease and related neurodegenerative diseases in elderly patients with schizophrenia. Arch. Gen. Psychiatry 55, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Reddy R. D. and Yao J. K. (1996) Free radical pathology in schizophrenia: a review. Prostaglandins, Leukot. Essent. Fatty Acids 55, 33–43.

    Article  CAS  Google Scholar 

  • Siegel B. V., Buchsbaum M. S., Bunney W. E., Gottschalk L. A., Haier R. J., Lohr J. B., et al. (1993) Corticalstriatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. Am. J. Psychiatry 150, 1325–1336.

    PubMed  Google Scholar 

  • Whatley S. A., Curti D., and Marchbanks R. M. (1996) Mitochondrial involvement in schizophrenia and other functional psychoses. Neurochem. Res. 21(9), 995–1004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Gibson.

Additional information

These authors contributed equally in completing the current study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubber, P., Tang, J., Haroutunian, V. et al. Mitochondrial enzymes in schizophrenia. J Mol Neurosci 24, 315–321 (2004). https://doi.org/10.1385/JMN:24:2:315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:2:315

Index Entries

Navigation