Skip to main content
Log in

Modified single-stranded oligonucleotides inhibit aggregate formation and toxicity induced by expanded polyglutamine

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is caused by an increase in the length of the poly(Q) tract in the huntingtin (Htt) protein, which changes its solubility and induces aggregation. Aggregation occurs in two general phases, nucleation and elongation, and agents designed to block either phase are being considered as potential therapeutics. We demonstrate that inclusion formation can be retarded by introducing modified, single-stranded oligonucleotides into a model neuronal cell line. This cell-based assay is used in conjunction with a standardized biochemical assay to identify molecules that can disrupt the process of aggregate formation. Active oligonucleotides include a 6-mer containing a single phosphorothioate linkage on each terminus, a 53-mer and a 9-mer containing three phosphorothioate linkages at each end, and a 25-mer consisting of all modified RNA residues. The disruption process directed by the active oligonucleotides appears to be independent of sequence specificity and complementarity. In contrast, the activity is more dependent on the type of chemical modifications contained within the oligonucleotide. Some oligonucleotides that demonstrated inhibition activity were also found to extend the life span of PC12 cells after the toxic Htt aggregation process was induced. Our data provide the first evidence that short synthetic oligonucleotides inhibit a fundamental pathological pathway of HD and may provide the basis for a novel therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham A. K. (1981) Effect of polyamines on the fidelity of macromolecular synthesis. Med. Biol. 59, 368–373.

    PubMed  CAS  Google Scholar 

  • Abraham F. F. (1974) Homogeneous Nucleation Theory. Academic Press, New York, NY.

    Google Scholar 

  • Antony T., Hoyer W., Cherny D., et al. (2003) Cellular polyamines promote the aggregation of alpha-synuclein. J. Biol. Chem. 278, 3235–3240.

    Article  PubMed  CAS  Google Scholar 

  • Berthelier V., Hamilton J. B., Chen S., and Wetzel R. (2001) A microtiter plate assay for polyglutamine aggregate extension. Anal. Biochem. 295, 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Braasch D. A. and Corey D. R. (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol. 8, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael J., Chatellier J., Woolfson A., et al. (2000) Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 97, 9701–9705.

    Article  PubMed  CAS  Google Scholar 

  • Chai Y., Koppenhafer S. L., Bonini N. M., and Paulson H. L. (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19, 10338–10347.

    PubMed  CAS  Google Scholar 

  • Chen S., Berthelier V., Hamilton J. B., O’Nuallain B., and Wetzel R. (2002a) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399.

    Article  PubMed  CAS  Google Scholar 

  • Chen S., Berthelier V., Yang W., and Wetzel R. (2001) Polyglutamine aggregation behavior invitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Chen S., Ferrone F. A., and Wetzel R. (2002b) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99, 11884–11889.

    Article  PubMed  CAS  Google Scholar 

  • Cummings C. J. and Zoghbi H. Y. (2000) Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9, 909–916.

    Article  PubMed  CAS  Google Scholar 

  • Cummings C. J., Mancini M. A., Antalffy B., et al. (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Dagle J. M., Weeks D. L., and Walder J. A. (1991) Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res. Dev. 1, 11–20.

    PubMed  CAS  Google Scholar 

  • Ferrone F. (1999) Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274.

    Article  PubMed  CAS  Google Scholar 

  • Gilad G. M. and Gilad V. H. (1986) Polyamines affect growth of cultured rat cerebellar neurons in different sera. Int. J. Dev. Neurosci. 4, 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Heiser V., Engemann S., Brocker W., et al. (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99(Suppl. 4), 16400–16406.

    Article  PubMed  CAS  Google Scholar 

  • Huang C. C., Faber P. W., Persichetti F., et al. (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24, 217–233.

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev A., Preisinger E., Dranovsky A., Goldgaber D., and Housman D. (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11404–11409.

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev A., Walker H. A., Slepko N., et al. (2002) Abivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 30, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist A., Noffz G., Pavlenko M., et al. (2002) Nonviral and viral gene transfer into different subsets of human dendritic cells yield comparable efficiency of transfection. J. Immunother. 25, 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y., Tucker T., Ren H., et al. (2000) Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J. Biol. Chem. 275, 10437–10442.

    Article  PubMed  CAS  Google Scholar 

  • Parekh-Olmedo H., Krainc D., and Kmiec E. B. (2002) Targeted gene repair and its application to neurodegenerative disorders. Neuron 33, 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Ren H., Nagai Y., Tucker T., Strittmatter W. J., and Burke J. R. (2001) Amino acid sequence requirements of peptides that inhibit polyglutamine-protein aggregation and cell death. Biochem. Biophys. Res. Commun. 288, 703–710.

    Article  PubMed  CAS  Google Scholar 

  • Saeboe-Larssen S., Fossberg E., and Gaudernack G. (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J. Immunol. Methods 259, 191–203.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I., Mahlke C., and Yuan J. (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer E. S. and Paddock S. (1990) Localization of human growth hormone to a sub-set of cytoplasmic vesicles in transfected PC12 cells. J. Cell Sci. 96(Pt. 3), 375–381.

    PubMed  CAS  Google Scholar 

  • Slotkin T. A. and Bartolome J. (1986) Role of ornithine decarboxylase and the polyamines in nervous system development: a review. Brain Res. Bull. 17, 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Stein C. A. (1999) Two problems in antisense biotechnology: in vitro delivery and the design of antisense experiments. Biochim. Biophys. Acta 1489, 45–52.

    PubMed  CAS  Google Scholar 

  • Suhr S. T., Gil E. B., Senut M. C., and Gage F. H. (1998) High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor. Proc. Natl. Acad. Sci. USA 95, 7999–8004.

    Article  PubMed  CAS  Google Scholar 

  • Suhr S. T., Senut M. C., Whitelegge J. P., et al. (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J. Cell Biol. 153, 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Van Tendeloo V. F., Ponsaerts P., Lardon F., et al. (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98, 49–56.

    Article  PubMed  Google Scholar 

  • Wanker E. E. (2000) Protein aggregation and pathogenesis of Huntington’s disease: mechanisms and correlations. Biol. Chem. 381, 937–942.

    Article  PubMed  CAS  Google Scholar 

  • Warrick J. M., Chan H. Y., Gray-Board, et al. (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428.

    Article  PubMed  CAS  Google Scholar 

  • Warrick J. M., Paulson H. L., Gray-Board et al. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt J. R., Davis P. W., and Freier S. M. (1996) Kinetics of G-quartet-mediated tetramer formation. Biochemistry 35, 8002–8008.

    Article  PubMed  CAS  Google Scholar 

  • Yang W., Dunlap J. R., Andrews R. B., and Wetzel R. (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Kmiec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parekh-Olmedo, H., Wang, J., Gusella, J.F. et al. Modified single-stranded oligonucleotides inhibit aggregate formation and toxicity induced by expanded polyglutamine. J Mol Neurosci 24, 257–267 (2004). https://doi.org/10.1385/JMN:24:2:257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:2:257

Index Entries

Navigation