Skip to main content
Log in

Brain injury-dependent expression of activity-dependent neuroprotective protein

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Activity-dependent neuroprotective protein (ADNP), a crucial brain development factor, contains a unique sequence, termed NAPVSIPQ, which protects mice against closed head injury (CHI). The aim of this study was to determine whether CHI affects ADNP mRNA expression in the injured brain hemisphere. Male C57JBL/6J mice were subjected to CHI. Brains were removed 5 h, 24 h, 7 d, and 29 d post-CHI. A comparison was made between ADNP mRNA in the injured versus the noninjured hemisphere using real-time polymerase chain reaction. A nonsignificant change (p>0.05) was found 5 h, 24 h, and 7 d post-CHI. However, a significant increase (p < 0.05) in ADNP mRNA expression was detected in the injured cerebral hemisphere 29 d post-CHI. The data presented may be associated with ADNP’s crucial involvement in brain development and response to injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Beni-Adani L., Gozes I., Cohen Y., Assaf Y., Steingart R. A., Brenneman D. E., et al. (2001) A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J. Pharmacol. Exp. Ther. 296, 57–63.

    PubMed  CAS  Google Scholar 

  • Benimetskaya L., Loike J. D., Khaled Z., Loike G., Silverstein S. C., Cao L., et al. (1997) Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nat. Med. 3, 414–420.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Spong C. Y., and Gozes I. (2000) Protective peptides derived from novel glial proteins. Biochem. Soc. Trans. 28, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y., Constantini S., Trembovler V., Weinstock M., and Shohami E. (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology and cognitive deficits. J. Neurotrauma 13, 557–568.

    PubMed  CAS  Google Scholar 

  • Delgado M., Abad C., Martinez C., Juarranz M. G., Arranz A., Gomariz R. P., and Leceta J. (2002) Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J. Mol. Med. 80, 16–24.

    Article  PubMed  CAS  Google Scholar 

  • Delgado M. and Ganea D. (2003) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J. 17, 1922–1924.

    PubMed  CAS  Google Scholar 

  • Fuhrmann G., Chung A. C., Jackson K. J., Hummelke G., Baniahmad A., Sutter J., et al. (2001) Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell 1, 377–387.

    Article  PubMed  CAS  Google Scholar 

  • Glaser T., Jepeal L., Edwards J. G., Young S. R., Favor J., and Maas R. L. (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 7, 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. (2001) Neuroprotective peptide drug delivery and development: potential new therapeutics. Trends Neurosci. 24, 700–705.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Alcalay R., Giladit E., Pinhasov A., Furman S., Brenneman D. E. (2002) NAP accelerates the performance of normal rats in watermaze. J. Mol. Neurosci. 19, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Divinsky I., Pilzer I., Fridkin M., Brenneman D. E., and Spier A. D. (2003) From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J. Mol. Neurosci. 20, 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Hailer N. P., Glomsda B., and Blaheta R. A. (2001) Astrocytic factors down-regulate the expression of major histocompatibility complex-class-II and intercellular adhesion molecule-1 on human monocytes. Neurosci. Lett. 298, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Hallbergson A. F., Gnatenco C., and Peterson D. A. (2003) Neurogenesis and brain injury: managing a renewable resource for repair. J. Clin. Invest. 112, 1128–1133.

    Article  PubMed  CAS  Google Scholar 

  • Holmin S. and Mathiesen T. (1999) Long-term intracerebral inflammatory response after experimental focal brain injury in rat. Neuroreport 10, 1889–1891.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino S., Tamaoka A., Takahashi M., Kobayashi S., Furukawa T., Oaki Y., et al. (1998) Emergence of immunoreactivities for phosphorylated tau and amyloid-beta protein in chronic stage of fluid percussion injury in rat brain. Neuroreport 9, 1879–1883.

    Article  PubMed  CAS  Google Scholar 

  • Koshinaga M., Katayama Y., Fukushima M., Oshima H., Suma T., and Takahata T. (2000) Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices. J. Neurotrauma 17, 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Leker R. R. and Shohami E. (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Brain Res. Rev. 39, 55–73.

    Article  PubMed  Google Scholar 

  • Lu D., Mahmood A., Zhang R., and Copp M. (2003) Upregulation of neurogenesis and reduction in functional deficits following administration of DEtA/NONOate, a nitric oxide donor, after traumatic brain injury in rats. J. Neurosurg. 99, 351–361.

    PubMed  CAS  Google Scholar 

  • Morganti-Kossmann M. C., Rancan M., Stahel P. F., and Kossmann T. (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr. Opin. Crit. Care 8, 101–105.

    Article  PubMed  Google Scholar 

  • Pinhasov A., Mandel S., Torchinsky A., Giladi E., Pittel Z., Goldsweig A. M., et al. (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Poggi S. H., Goodwin K., Hill J. M., Brenneman D. E., Tendi E., Schinelli S., et al. (2003) The role of activity-dependent neuroprotective protein in a mouse model of fetal alcohol syndrome. Am. J. Obstet. Gynecol. 189, 790–793.

    Article  PubMed  CAS  Google Scholar 

  • Poggi S. H., Vink J., Goodwin K., Hill J. M., Brenneman D. E., Pinhasov A., et al. (2002) Differential expression of embryonic and maternal activity-dependent neuroprotective protein during mouse development. Am. J. Obstet. Gynecol. 187, 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Rall J. M., Matzilevich D. A., and Dash P. K. (2003) Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury. Neuropathol. Appl. Neurobiol. 29, 18–31.

    Article  Google Scholar 

  • Ralph P. and Nakoinz I. (1977) Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J. Immunol. 119, 950–954.

    PubMed  CAS  Google Scholar 

  • Romano J., Beni-Adani L., Nissenbaum O. L., Brenneman D. E., Shohami E., and Gozes I. (2002) A single administration of the peptide NAP induces long-term protective changes against the consequences of head injury: gene Atlas array analysis. J. Mol. Neurosci. 18, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Roy N. S., Wang S., Jiang L., Kang J., Benraiss A., Harrison-Restelli C., et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6, 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Swintosky V. L., Gozes I., Brenemman D., and Plata-Salaman C. R. (2000) Activity dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. Society for Neuroscience’s 30th Annual Meeting. New Orleans, LA, November 4–9, 2000. Abstract 317-6. Available at http://sfn.scholarone.com/itin2000/

  • Tan S. M., Hyland R. H., Al-Shamkhani A., Douglass W. A., Shaw J. M., and Law S. K. (2000) Effect of integrin beta 2 subunit truncations on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) assembly, surface expression, and function. J. Immunol. 165, 2574–2581.

    PubMed  CAS  Google Scholar 

  • Yoshimura S., Teramoto T., Whalen M. J., Irizarry M. C., Takagi Y., Qiu J., et al. (2003) FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J. Clin. Invest. 112, 1202–1210.

    Article  PubMed  CAS  Google Scholar 

  • Zaltzman R., Beni S. M., Giladi E., Pinhasov A., Steingart R. A., Romano J., et al. (2003) Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury-related dysfunction in adults. Neuroreport 14, 481–484.

    Article  PubMed  CAS  Google Scholar 

  • Zamostiano R., Pinhasov A., Gelber E., Steingart R. A., Seroussi E., Giladi E., et al. (2001) Cloning and characterization of the human activity-dependent neuroprotective protein. J. Biol. Chem. 276, 708–714.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illana Gozes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaltzman, R., Alexandrovich, A., Beni, S.M. et al. Brain injury-dependent expression of activity-dependent neuroprotective protein. J Mol Neurosci 24, 181–187 (2004). https://doi.org/10.1385/JMN:24:2:181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:2:181

Index Entries

Navigation