Skip to main content
Log in

NAP mechanisms of neuroprotection

  • Neuroprotection
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

An 8-amino-acid peptide, NAPVSIPQ (NAP), was identified as the smallest active element of activity-dependent neuroprotective protein that exhibits potent neuroprotective action. Potential signal transduction pathways include cGMP production and interference with inflammatory mechanisms, tumor necrosis factor-α, and MAC1-related changes. Because of its intrinsic structure, NAP might interact with extracellular proteins and also transverse membranes. NAP-associated protection against oxidative stress, glucose deprivation, and apoptotic mechanisms suggests interference with fundamental processes. This paper identifies p53, a key regulator of cellular apoptosis, as an intracellular target for NAP’s activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashur-Fabian O., Giladi E., Furman S., Steingart R. A., Wollman Y., Fridkin M., et al. (2001) Vasoactive intestinal peptide and related molecules induce nitrite accumulation in the extracellular milieu of rat cerebral cortical cultures. Neurosci. Lett. 307, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Ashur-Fabian O., Segal-Ruder Y., Skutelsky E., Brenneman D.E., Steingart R. A., Giladi E., and Gozes I. (2003). The effect of the novel peptide NAPVISPQ on the aggregation of the beta-amyloid peptide. Peptides 24, 1413–1423.

    Article  PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Beni-Adani L., Gozes I., Cohen Y., Assaf Y., Steingart R. A., Brenneman D. E., et al. (2001) A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injured mice. J. Pharmacol. Exp. Ther. 296, 57–63.

    PubMed  CAS  Google Scholar 

  • Gozes I., and Brenneman D. E. (2000) A new concept in neuroprotection. J. Mol. Neurosci. 14, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., and Spier A. (2002) Peptides as drug targets in Alzheimer’s disease. Drug Dev. Res. 56, 475–481.

    Article  CAS  Google Scholar 

  • Gozes I., Alcalay R., Giladi E., Pinhasov A., Furman S., and Brenneman D. E. (2002a) NAP accelerates the performance of normal rats in the water maze. J. Mol. Neurosci. 19, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Giladi E., Pinhasov A., Bardea A., and Brenneman D. E. (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. 293, 1091–1098.

    PubMed  CAS  Google Scholar 

  • Gozes I., Giladi E., Pinhasov A., Furman S., Romano J., Steingart R. A., Rubinraut S., and Fridkin M. (2002b) Intranasal delivery of bioactive peptides or peptide analogues enhances spatial memory and protects against cholinergic deficits, in The Proceedings of the 44th Oholo Conference: The Blood Brain Barrier Drug Delivery and Brain Pathology, Lustig S., Shapira S., Kobiler O., eds., Plenum Press, New York, NY, pp. 363–370.

    Google Scholar 

  • Gressens P., Hill J. M., Gozes I., Fridkin M., and Brenneman D. E. (1993) Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 362, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Leker R. R., Teichner A., Grigoriadis N., Ovadia H., Brenneman D. E., Fridkin M., et al. (2002) NAP, a femtomolar-acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke 33, 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  • Newton P., Brenneman D. E., and Gozes I. (2001) 30-Day intranasal toxicity studies of NAP in rats and dogs. J. Mol. Neurosci. Abstr. 16, 61.

    Google Scholar 

  • Newton P., Spier A. D., and Gozes I (2003) Intravenous and intranasal toxicity and toxicokinetic study of NAPVSIPQ (NAP) in dogs. Neuropeptides (Abstr.) 37, 163.

    Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res. 854, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., and Cotman C. W. (1993) Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13, 1676–1687.

    PubMed  CAS  Google Scholar 

  • Pinhasor A., Mandel S., Torchinsky A., et al., (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res. Dev. Brain Res. 144, 83–90.

    Article  Google Scholar 

  • Poduslo J. F., Curran G. L., Kumar A., Frangione B., and Soto C. (1999) β-Sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain-barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol. 39, 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Romano J., Beni-Adani L., Levy Nissenbaum O., Brenneman D. E., Shohami E., and Gozes I. (2002) A single administration of the peptide NAP induces long-term protective changes against the consequences of head injury: gene atlas array analysis. J. Mol. Neurosci. 18, 137–450.

    Article  Google Scholar 

  • Seubert P., Vigo-Pelfrey C., Esch F., Lee M., Dovey H., Davis D., et al. (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359, 325–327.

    Article  PubMed  CAS  Google Scholar 

  • Shoji M., Golde T. E., Ghiso J., Cheung T. T., Estus S., Shaffer L. M., et al. (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258, 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Sigalov E., Fridkin M., Brenneman D. E., and Gozes I. (2000) VIP-related protection against iodoacetate toxicity in pheochromocytoma (PC12) cells: a model for ischemic/hypoxic injury. J. Mol. Neurosci. 15, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Soto C. (1999) Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol. Med. Today. 5, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Soto C., Kascsak R. J., Saborio G. P., Aucouturier P., Wisniewski T., Prelli F., et al. (2000) Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet. 355, 192–197.

    Article  PubMed  CAS  Google Scholar 

  • Spong C. Y., Abebe D. T., Gozes I., Brenneman D. E., and Hill J. M. (2001) Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. J. Pharmacol. Exp. Ther. 297, 774–779.

    PubMed  CAS  Google Scholar 

  • Steingart R. A., Solomon B., Brenneman D. E., Fridkin M., and Gozes I. (2000) VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress. J. Mol. Neurosci. 15, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Tamagno E., Parola M., Guglielmotto M., Santoro G., Bardini P., Marra L., et al. (2003) Multiple signaling events in amyloid beta-induced, oxidative stressdependent neuronal apoptosis. Free Radic. Biol. Med., 35(1), 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Velez-Pardo C., Ospina G. G., and Jimenez del Rio M. (2002) Aβ[25–35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: involvement of H2O2, caspase-3, NF-κB, p53 and c-Jun. Neurotoxicology 23(3), 351–365.

    Article  PubMed  CAS  Google Scholar 

  • Wilkemeyer M. F., Chen S. Y., Menkari C. E., Brenneman D. E., Sulik K. K., and Charness M. E. (2003) Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity. Proc. Natl. Acad. Sci. U. S. A. 100(14), 8543–8548.

    Article  PubMed  CAS  Google Scholar 

  • Zaltzman R., Beni S. M., Giladi E., Pinhasov A., Steingart R. A., Romano J., et al. (2003) Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury related dysfunction in adults. Neuroreport 14, 481–484.

    Article  PubMed  CAS  Google Scholar 

  • Zamostiano R., Pinhasov A., Gelber E., Steingart R. A., Seroussi E., Giladi E., et al. (2001) Cloning and characterization of the human activity-dependent neuroprotective protein (ADNP). J. Biol. Chem. 276, 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Zemlyak I., Furman S., Brenneman D. E., and Gozes I. (2000) A novel peptide (NAP) prevents death in enriched neuronal cultures. Regul. Pept. 96, 39–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illana Gozes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gozes, I., Steingart, R.A. & Spier, A.D. NAP mechanisms of neuroprotection. J Mol Neurosci 24, 67–72 (2004). https://doi.org/10.1385/JMN:24:1:067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:1:067

Index Entries

Navigation