Journal of Molecular Neuroscience

, Volume 24, Issue 1, pp 33–44 | Cite as

Validity of the Mindstreams™ computerized cognitive battery for mild cognitive impairment

  • Tzvi Dwolatzky
  • Victor Whitehead
  • Glen M. Doniger
  • Ely S. Simon
  • Avraham Schweiger
  • Dena Jaffe
  • Howard Chertkow
Early Detection

Abstract

The NeuroTrax Mindstreams™ computerized cognitive assessment system was designed for widespread clinical and research use in detecting mild cognitive impairment (MCI). However, the capability of Mindstreams tests to discriminate the elderly with MCI from those who are cognitively healthy has yet to be evaluated. Moreover, the comparability between these tests and traditional neuropsychological tests in detecting MCI has not been examined. A two-center study was designed to assess the discriminant validity of tests in the Mindstreams Mild Impairment Battery. Participants were 30 individuals diagnosed with MCI, 29 with mild Alzheimer’s disease (AD), and 39 healthy elderly. Testing was with the Mindstreams battery and traditional neuropsychological tests. Receiver operating characteristic (ROC) analysis was used to examine the ability of Mindstreams and traditional measures to discriminate those with MCI from cognitively healthy elderly. Between-group comparisons were made (Mann-Whitney U test) between MCI and healthy elderly and between MCI and mild AD groups. Mindstreams outcome parameters across multiple cognitive domains significantly discriminated between MCI and healthy elders with considerable effect sizes (p<0.05). Measures of memory, executive function, visual spatial skills, and verbal fluency discriminated best, and discriminability was at least comparable to that of traditional neuropsychological tests in these domains. Mindstreams tests are effective in detecting MCI, providing a comprehensive profile of cognitive function. Further, the enhanced precision and ease of use of these computerized tests make the NeuroTrax system a valuable clinical tool in the identification of elders at high risk for dementia.

Index Entries

Memory computerized testing neuropsychology Alzheimer’s disease mild cognitive impairment 

References

  1. Albert M. S., Moss M. B., Tanzi R., and Jones K. (2001) Preclinical prediction of AD using neuropsychological tests. J. Int. Neuropsychol. Soc. 7, 631–639.PubMedCrossRefGoogle Scholar
  2. Bischkopf J., Busse A., and Angermeyer M. C. (2002) Mild cognitive impairment-a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr. Scand. 106, 403–414.PubMedCrossRefGoogle Scholar
  3. Bozoki A., Giordani B., Heidebrink J. L., Berent S., and Foster N. L. (2001) Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Arch. Neurol. 58, 411–416.PubMedCrossRefGoogle Scholar
  4. Burns A. and Zaudig M. (2002) Mild cognitive impairment in older people. Lancet, 360, 1963–1965.PubMedCrossRefGoogle Scholar
  5. Cauraugh J. H. (1990) Speed-accuracy tradeoff during response preparation. Res. Q. Exerc. Sport 61, 331–337.PubMedGoogle Scholar
  6. Chen P., Ratcliff G., Belle S. H., Cauley J. A., DeKosky S. T., and Ganguli M. (2000) Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology 55, 1847–1853.PubMedGoogle Scholar
  7. Daly E., Zaitchik D., Copeland M., Schmahmann J., Gunther J., and Albert M. (2000) Predicting conversion to Alzheimer disease using standardized clinical information. Arch. Neurol. 57, 675–680.PubMedCrossRefGoogle Scholar
  8. Darby D., Maruff P., Collie A., and McStephen M. (2002) Mild cognitive impairment can be detected by multiple assessments in a single day. Neurology 59, 1042–1046.PubMedCrossRefGoogle Scholar
  9. Elwood R. W. (2001) MicroCog: assessment of cognitive functioning. Neuropsychol. Rev. 11, 89–100.PubMedCrossRefGoogle Scholar
  10. Flicker C., Ferris S. H., and Reisberg B. (1991) Mild cognitive impairment in the elderly: predictors of dementia. Neurology 41, 1006–1009.PubMedGoogle Scholar
  11. Folstein M. F., Folstein S. E., McHugh P. R. (1975) Minimental state: a practical method for grading the cognitive state of patients for the clinician. J. Psych. Res. 12, 189–198.CrossRefGoogle Scholar
  12. Fowler K. S., Saling M. M., Conway E. L., Semple J. M., and Louis W. J. (2002) Paired associate performance in the early detection of DAT. J. Int. Neuropsychol. Soc. 8, 58–71.PubMedCrossRefGoogle Scholar
  13. Green R. C., Green J., Harrison J. M., and Kutner M. H. (1994) Screening for cognitive impairment in older individuals. Validation study of a computer-based test. Arch. Neurol. 51, 779–786.PubMedGoogle Scholar
  14. Hanninen T., Hallikainen M., Koivisto K., Helkala E. L., Reinikainen K. J., Soininen H., et al. (1995) A follow-up study of age-associated memory impairment: neuropsychological predictors of dementia. J. Am. Geriatr. Soc. 43, 1007–1015.PubMedGoogle Scholar
  15. Jacobs D. M., Sano M., Dooneief G., Marder K., Bell K. L., and Stern Y. (1995) Neuropsychological detection and characterization of preclinical Alzheimer’s disease. Neurology 45, 957–962.PubMedGoogle Scholar
  16. Kabani N. J., Sled J. G., Shuper A., and Chertkow H. (2002) Regional magnetization transfer ratio changes in mild cognitive impairment. Magn. Reson. Med. 47, 143–148.PubMedCrossRefGoogle Scholar
  17. Kawas C. H., Corrada M. M., Brookmeyer R., Morrison A., Resnick S. M., Zonderman A. B., and Arenberg D. (2003) Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology 60, 1089–1093.PubMedCrossRefGoogle Scholar
  18. Levy R. (1994) Aging-associated cognitive decline. Working Party of the International Psychogeriatric Association in collaboration with the World Health Organization. Int. Psychogeriatr. 6, 63–68.PubMedCrossRefGoogle Scholar
  19. MacLeod C. M. (1991) Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203.PubMedCrossRefGoogle Scholar
  20. Mapstone M., Steffenella T. M., and Duffy C. J. (2003) A visuospatial variant of mild cognitive impairment: getting lost between aging and AD. Neurology 60, 802–808.PubMedCrossRefGoogle Scholar
  21. Massoud F., Chertkow H., Whitehead V., Overbury O., and Bergman H. (2002) Word-reading thresholds in Alzheimer disease and mild memory loss: a pilot study. Alzheimer Dis. Assoc. Disord. 16, 31–39.PubMedCrossRefGoogle Scholar
  22. Mohs R., Rosen W., Davis K. (1983) The Alzheimers disease assessment scale: an instrument for assessing treatment efficacy. Psychopharm. Bull. 19, 448–450.Google Scholar
  23. NeuroTrax Corporation (2003) Mindstreams cognitive health assessment. http://www.mindstreamshealth.com/content/mssupmat.pdf (electronic citation).Google Scholar
  24. Olichney J. M., Morris S. K., Ochoa C., Salmon D. P., Thal L. J., Kutas M., and Iragui V. J. (2002) Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 73, 377–384.PubMedCrossRefGoogle Scholar
  25. Petersen R. C., Doody R., Kurz A., Mohs R. C., Morris J. C., Rabins P. V., et al. (2001) Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992.PubMedCrossRefGoogle Scholar
  26. Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., and Kokmen E. (1999) Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308.PubMedCrossRefGoogle Scholar
  27. Petersen R. C., Stevens J. C., Ganguli M., Tangalos E. G., Cummings J. L., and DeKosky S. T. (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1133–1142.PubMedGoogle Scholar
  28. Powell D. H., Kaplan E. F., Whitla D., Weintraub S., Catlin R., and Funkenstein H. H. (1993) Microcog: assessment of cognitive functioning [2.1] (computer program). The Psychological Corporation, San Antonio, TX.Google Scholar
  29. Reid W., Broe G., Creasey H., Grayson D., McCusker E., Bennett H., et al. (1996) Age at onset and pattern of neuropsychological impairment in mild early-stage Alzheimer disease. A study of a community-based population. Arch. Neurol. 53, 1056–1061.PubMedGoogle Scholar
  30. Ritchie K., Artero S., and Touchon J. (2001) Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 56, 37–42.PubMedGoogle Scholar
  31. Tierney M. C., Szalai J. P., Snow W. G., Fisher R. H., Nores A., Nadon G., et al. (1996) Prediction of probable Alzheimer’s disease in memory-impaired patients: A prospective longitudinal study. Neurology 46, 661–665.PubMedGoogle Scholar
  32. Xu G., Meyer J. S., Thornby J., Chowdhury M., and Quach M. (2002) Screening for mild cognitive impairment (MCI) utilizing combined mini-mental-cognitive capacity examinations for identifying dementia prodromes. Int. J. Geriatr. Psychiatry 17, 1027–1033.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Tzvi Dwolatzky
    • 1
  • Victor Whitehead
    • 2
  • Glen M. Doniger
    • 3
  • Ely S. Simon
    • 3
  • Avraham Schweiger
    • 4
  • Dena Jaffe
    • 5
  • Howard Chertkow
    • 2
  1. 1.Memory Disorders Clinic and Department of GeriatricsShaare Zedek Medical CenterJerusalemIsrael
  2. 2.Department of Clinical NeurosciencesMcGill UniversityMontrealCanada
  3. 3.Department of Clinical ScienceNeuroTrax CorporationNew York
  4. 4.Department of Behavioral SciencesAcademic College of Tel AvivTel AvivIsrael
  5. 5.School of Public HealthHebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations