Skip to main content
Log in

Fos expression in the suprachiasmatic nucleus during photic entrainment of circadian rhythms in retinally damaged rats

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The protein product of the immediate-early gene c-fos is expressed rhythmically in the shell region of the suprachiasmatic nucleus (SCN), the mammalian circadian clock. Recently, we found that exposure to an entraining light pulse caused a suppression of Fos expression in the SCN shell in rats. To study the hypothesis that suppression of Fos in the shell is a correlate of photic entrainment, we used rats that were treated with the retinal neurotoxin monosodium glutamate (MSG) during the neonatal period. In spite of retinal degeneration, MSG-treated rats entrained normally and displayed light-induced suppression of Fos within the SCN shell. These results support the view that light-induced suppression of Fos within the SCN shell is a cellular correlate of photic entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaulé C. and Amir S. (1999) Photic entrainment and induction of immediate-early genes within the rat circadian system. Brain Res. 821, 95–100.

    Article  PubMed  Google Scholar 

  • Beaulé C. and Amir S. (2001) Photic regulation of circadian rhythms and the expression of p75 neurotrophin receptor immunoreactivity in the suprachiasmatic nucleus in rats. Brain Res. 894, 301–306.

    Article  PubMed  Google Scholar 

  • Beaulé C., Arvanitogiannis A., and Amir S. (2001) Light suppresses Fos expression in the shell region of the suprachiasmatic nucleus at dusk and dawn: implications for photic entrainment of circadian rhythms. Neuroscience 106, 249–254.

    Article  PubMed  Google Scholar 

  • Chambille I. (1998a) Temporospatial characteristics of light-induced fos immunoreactivity in suprachiasmatic nuclei are not modified in Syrian hamsters treated neonatally with monosodium glutamate. Brain Res. 808, 250–261.

    Article  PubMed  CAS  Google Scholar 

  • Chambille I. (1998b) Retinal ganglion cells expressing the FOS protein after light stimulation in the Syrian hamster are relatively insensitive to neonatal treatment with monosodium glutamate. J. Comp. Neurol. 392, 458–467.

    Article  PubMed  CAS  Google Scholar 

  • Chambille I. and Serviere J. (1993) Neurotoxic effects of neonatal injections of monosodium L-glutamate (L-MSG) on the retinal ganglion cell layer of the golden hamster: anatomical and functional consequences on the circadian system. J. Comp. Neurol. 338, 67–82.

    Article  PubMed  CAS  Google Scholar 

  • Chen D., Buchanan G. F., Ding J. M., Hannibal J., and Gillette M. U. (1999) Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 96, 13468–13473.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein K., Beaule C., D’Abramo R., and Amir S. (2000) Expression profiles of JunB and c-Fos proteins in the rat circadian system. Brain Res. 870, 54–65.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein K., Pfaus J. G., Rusak B., and Amir S. (1995) Neonatal monosodium glutamate treatment prevents effects of constant light on circadian temperature rhythms of adult rats. Brain Res. 675, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff V. K., Pieschl R. L., Wisialowski T. A., Park W. K. Strecker G. J., de Jeu M. T., et al. (1999) A reexamination of the role of GABA in the mammalian suprachiasmatic nucleus. J. Biol. Rhythms 14, 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Guido M. E., de Guido L. B., Goguen D., Robertson H. A., and Rusak B. (1999a) Daily rhythm of spontaneous immediate-early gene expression in the rat suprachiasmatic nucleus. J. Biol. Rhythms 14, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Guido M. E., Goguen D., de Guido L., Robertson H. A., and Rusak B. (1999b) Circadian and photic regulation of immediate-early gene expression in the hamster suprachiasmatic nucleus. Neuroscience 90, 555–571.

    Article  PubMed  CAS  Google Scholar 

  • Hastings M. H., Ebling F. J., Grosse J., Herbert J., Maywood E. S., Mikkelsen J. D., and Sumova A. (1995) Immediate-early genes and the neural bases of photic and non-photic entrainment. Ciba Found. Symp. 183, 175–189.

    PubMed  CAS  Google Scholar 

  • Herzog E. D., Geusz M. E., Khalsa S. B., Straume M., and Block G. D. (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res. 757, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov O. C. and Stoynev A. G. (1994) Gene expression in suprachiasmatic nucleus and circadian rhythms. Neurosci. Biobehav. Rev. 18, 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A. and Buijs R. M. (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 309, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Klein D., Moore R. Y., and Reppert S. M., eds. (1991) Suprachiasmatic Nucleus: The Mind’s Clock, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Kornhauser J. M., Mayo K. E., and Takahashi J. S. (1996) Light, immediate-early genes, and circadian rhythms. Behav. Genet. 26, 221–240.

    Article  PubMed  CAS  Google Scholar 

  • Kornhauser J. M., Nelson D. E., Mayo K. E., and Takahashi J. S. (1990) Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Leak R. K. and Moore R. Y. (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J. Comp. Neurol. 433, 312–334.

    Article  PubMed  CAS  Google Scholar 

  • Leak R. K., Card J. P., and Moore R. Y. (1999) Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res. 819, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Liu C. and Reppert S. M. (2000) GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Lundkvist G. B., Kristensson K., and Hill R. H. (2002) The suprachiasmatic nucleus exhibits diurnal variations in spontaneous excitatory postsynaptic activity. J. Biol. Rhythms 17, 40–51.

    Article  PubMed  CAS  Google Scholar 

  • Moga M. M. and Moore R. Y. (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J. Comp. Neurol. 389, 508–534.

    Article  PubMed  CAS  Google Scholar 

  • Moore R. Y. (1996) Entrainment pathways and the functional organization of the circadian system. Prog. Brain Res. 111, 103–119.

    PubMed  CAS  Google Scholar 

  • Moore R. Y. and Speh J. C. (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci. Lett. 150, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Moore R. Y., Speh J. C., and Leak R. K. (2002) Suprachiasmatic nucleus organization. Cell Tissue Res. 309, 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W. (1969) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J. Neuropathol. Exp. Neurol. 28, 455–474.

    Article  PubMed  CAS  Google Scholar 

  • Pickard G. E., Turek F. W., Lamperti A. A., and Silverman A. J. (1982) The effect of neonatally administered monosodium glutamate (MSG) on the development of retinofugal projections and entrainment of circadian locomotor activity. Behav. Neural Biol. 34, 433,444.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh C. S., and Daan S. (1976) A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. J. Comp. Physiol. 106, 291–331.

    Article  Google Scholar 

  • Rea M. A. (1989) Light increases Fos-related protein immunoreactivity in the rat suprachiasmatic nuclei. Brain Res. Bull. 23, 577–581.

    Article  PubMed  CAS  Google Scholar 

  • Rea M. A. (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol. Int. 15, 395–423.

    Article  PubMed  CAS  Google Scholar 

  • Rusak B., McNaughton L., Robertson H. A., and Hunt S. P. (1992) Circadian variation in photic regulation of immediate-early gene mRNAs in rat suprachiasmatic nucleus cells. Brain Res. Mol. Brain Res. 14, 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Rusak B., Robertson H. A., Wisden W., and Hunt S. P. (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248, 1237–1240.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz W. J., Peters R. V., Aronin N., and Bennett M. R. (1996) Unexpected c-fos gene expression in the suprachiasmatic nucleus of mice entrained to a skeleton photoperiod. J. Biol. Rhythms 11, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz W. J., Takeuchi J., Shannon W., Davis E. M., and Aronin N. (1994) Temporal regulation of light-induced Fos and Fos-like protein expression in the ventrolateral subdivision of the rat suprachiasmatic nucleus. Neuroscience 58, 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Shirakawa T., Honma S., and Honma K. (2001) Multiple oscillators in the suprachiasmatic nucleus. Chronobiol. Int. 18, 371–387.

    Article  PubMed  CAS  Google Scholar 

  • Sumova A. and Illnerova H. (1998) Photic resetting of intrinsic rhythmicity of the rat suprachiasmatic nucleus under various photoperiods. Am. J. Physiol. 274, R857-R863.

    PubMed  CAS  Google Scholar 

  • Sumova A., Travnickova Z., and Illnerova H. (2000) Spontaneous c-Fos rhythm in the rat suprachiasmatic nucleus: location and effect of photoperiod. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R2262-R2269.

    PubMed  CAS  Google Scholar 

  • Sumova A., Travnickova Z., Mikkelsen J. D., and Illnerova H. (1998) Spontaneous rhythm in c-Fos immunoreactivity in the dorsomedial part of the rat suprachiasmatic nucleus. Brain Res. 801, 254–258.

    Article  PubMed  CAS  Google Scholar 

  • van den Pol A. N. (1986) Gamma-aminobutyrate, gastrin releasing peptide, serotonin, somatostatin, and vasopressin: ultrastructural immunocytochemical localization in presynaptic axons in the suprachiasmatic nucleus. Neuroscience 17, 643–659.

    Article  PubMed  Google Scholar 

  • van den Pol A. N. (1993) Glutamate and GABA presence and action in the suprachiasmatic nucleus. J. Biol. Rhythms 8, S11-S15.

    PubMed  Google Scholar 

  • van Rijn C. M., Marani E., and Rietveld W. J. (1986) The neurotoxic effect of monosodium glutamate (MSG) on the retinal ganglion cells of the albino rat. Histol. Histopathol. 1, 291–295.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaulé, C., Barry-Shaw, J. & Amir, S. Fos expression in the suprachiasmatic nucleus during photic entrainment of circadian rhythms in retinally damaged rats. J Mol Neurosci 22, 223–229 (2004). https://doi.org/10.1385/JMN:22:3:223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:3:223

Index Entries

Navigation