Skip to main content
Log in

Adrenergic activation of steroid 5α-reductase gene expression in rat C6 glioma cells

Involvement of cyclic AMP/protein kinase A-mediated signaling pathway

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Steroid 5α-reductase (5α-R) is well known as the enzyme converting progesterone and other steroid hormones to their 5α-reduced metabolites and has been reported to be localized in both neuronal and glial cells in the brain. Previously, the enzyme activity in glial cells has been shown to be enhanced either by coculturing with neuronal cells or by adding the conditioned medium of neuronal cells, suggesting a possible implication of neuro-glial interactions in the regulation of neurosteroid metabolism in the brain. In the present studies, the effects of adrenergic agonists on 5α-R mRNA and protein levels in rat C6 glioma cells were examined as one of the model experiments for investigating the influence of neuronal activity on the expression of 5α-R gene in the glial cell. The direct challenge of β-adrenergic agonists to glioma cells resulted in the rapid and transient elevation of 5α-R mRNA levels through the activation of the cyclic AMP (cAMP)/protein kinase A-mediated signaling pathway. Further studies showed that cAMP-induced 5α-R mRNA expression was completely abolished by pretreatment of cells with actinomycin D and also indicated that the elevation of 5α-R mRNA levels was accompanied by an increase in enzyme protein in the cells. These findings provide strong evidence that the stimulation of β-adrenergic receptors might induce the transcriptional activation of 5α-R gene expression in glial cells, proposing the possibility that neuronal activity might be involved in the production of neuroactive 5α-reduced steroids in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anciaux K., Van Dommelen K., Nicolai S., Van Mechelen E., and Slegers H. (1997) Cyclic AMP-mediated induction of the glial fibrillary acidic protein is independent of protein kinase A activation in rat C6 glioma. J. Neurosci. Res. 48, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Andreassi J. L. I., Eggleston W. B., Fu G., and Stewart J. K. (1998) Phenylethanolamine N-methyltransferase mRNA in rat hypothalamus and cerebellum. Brain Res. 779, 289–291.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chiu S. Y. and Kriegler S. (1994) Neurotransmittermediated signaling between axons and glial cells. Glia 11, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli D. F., Nicoletti V. G., Dell’Albani P., Barresi V., Caruso A., Conticello S. G., et al. (1999) GFAPβ mRNA expression in the normal rat brain and after neuronal injury. Neurochem. Res. 24, 709–714.

    Article  PubMed  CAS  Google Scholar 

  • Hansson E. (1989) Co-existence between receptors, carriers, and second messengers on astrocytes grown in primary cultures. Neurochem. Res. 14, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Koschel K. and Tas P. W. L. (1993) Lysophosphatidic acid reverts the β-adrenergic agonist-induced morphological response in C6 rat glioma cells. Exp. Cell Res. 206, 162–166.

    Article  PubMed  CAS  Google Scholar 

  • Le Prince G., Fages C., Rolland B., Nunez J., and Tardy M. (1991) DBcAMP effect on the expression of GFAP and of its encoding mRNA in astroglial primary cultures. Glia 4, 322–326.

    Article  PubMed  Google Scholar 

  • Lephart E. D. (1993) Brain 5α-reductase: cellular, enzymatic, and molecular perspectives and implications for biological function. Mol. Cell. Neurosci. 4, 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Melcangi R. C., Cavarretta I., Magnaghi V., Ballabio M., Martini L., and Motta M. (1998) Crosstalk between normal and tumoral brain cells. Effect on sex steroid metabolism. Endocrine 8, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Celotti F., Ballabio M., Castano P., Massarelli R., Poletti A., and Martini L. (1990) 5α-Reductase activity in isolated and cultured neuronal and glial cells of the rat. Brain Res. 516, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Celotti F., Castano P., and Martini L. (1992) Intracellular signalling systems controlling the 5α-reductase in glial cell cultures. Brain Res. 585, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Celotti F., Castano P., and Martini L. (1993) Differential localization of the 5α-reductase and the 3α-hydroxysteroid dehydrogenase in neuronal and glial cultures. Endocrinology 132, 1252–1259.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Celotti F., and Martini L. (1994a) Neurons influence the metabolism of testosterone in cultured astrocytes via humoral signals. Endocrine 2, 709–713.

    CAS  Google Scholar 

  • Melcangi R. C., Celotti F., and Martini L. (1994b) Progesterone 5-α-reduction in neuronal and in different types of glial cell cultures: type 1 and type 2 astrocytes and oligodendrocytes. Brain Res. 639, 202–206.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T., Kagawa S., Kitagawa K., Futaki S., Yokoi H., Tsuruo Y., and Ishimura K. (1996) Immunocytochemical localization of 5α-reductase type 1 in the prostate of normal and castrated rats. Histochem. Cell Biol. 105, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Morita K., Tsuruo Y., Ishimura Y., Her S., Bell R. A., and Wong D. L. (1999) Influence of serum-free culture conditions on steroid 5α-reductase mRNA expression in rat C6 glioma cells. Brain Res. 830, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Normington K. and Russell D. W. (1992) Tissue distribution and kinetic characterization of rat steroid 5α-reductase isozymes: Evidence for distinct physiological functions. J. Biol. Chem. 267, 19548–19554.

    PubMed  CAS  Google Scholar 

  • Papadopoulos V. and Guarneri P. (1994) Regulation of C6 glioma cell steroidogenesis by adenosine 3′,5′-cyclic monophosphate. Glia 10, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Paul S. M. and Purdy R. H. (1992) Neuroactive steroids. FASEB J. 6, 2311–2322.

    PubMed  CAS  Google Scholar 

  • Poletti A., Negri-Cesi P., Melcangi R. C., Colciago A., Martini L., and Celotti F. (1997) Expression of androgen-activating enzymes in cultured cells of developing rat brain. J. Neurochem. 68, 1298–1303.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M., Robel P., and Baulieu E.-E. (1996) Development and regeneration of the nervous system: A role for neurosteroids. Dev. Neurosci. 18, 6–21.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J. P., Nishiyama N., Wilson D., and Taniwaki T. (1994) Receptor-mediated regulation of neuropeptide gene expression in astrocytes. Glia 11, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Shain W., Bausback D., Fiero A., Madelian V., and Turner J. N. (1992) Regulation of receptor-mediated shape change in astroglial cells. Glia 5, 223–238.

    Article  PubMed  CAS  Google Scholar 

  • Shain W., Forman D. S., Madelian V., and Turner J. N. (1987) Morphology of astroglial cells is controlled by β-adrenergic receptors. J. Cell Biol. 105, 2307–2314.

    Article  PubMed  CAS  Google Scholar 

  • Tas P. W. L. and Koschel K. (1990) Thrombin reverts the beta-adrenergic agonist-induced morphological response in rat glioma C6 cells. Exp. Cell Res. 189, 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruo Y., Miyamoto T., Yokoi H., Kitagawa K., Futaki S., and Ishimura K. (1996) Immunohistochemical presence of 5α-reductase rat type 1-containing cells in the rat brain. Brain Res. 722, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Viger R. S. and Robaire B. (1994) Immunocytochemical localization of 4-ene steroid 5α-reductase type 1 along the rat epididymis during postnatal development. Endocrinology 134, 2298–2306.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoji Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, K., Arimochi, H. & Tsuruo, Y. Adrenergic activation of steroid 5α-reductase gene expression in rat C6 glioma cells. J Mol Neurosci 22, 205–212 (2004). https://doi.org/10.1385/JMN:22:3:205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:22:3:205

Index Entries

Navigation