Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease

Abstract

There is evidence that both inflammatory mechanisms and mitochondrial dysfunction contribute to Parkinson’s disease (PD) pathogenesis. We investigated whether the cyclooxygenase 2 (COX-2) inhibitor rofecoxib either alone or in combination with creatine could exert neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of PD in mice. Both rofecoxib and creatine administered alone protected against striatal dopamine depletions and loss of substantia nigra tyrosine hydroxylase immunoreactive neurons. Administration of rofecoxib with creatine produced significant additive neuroprotective effects against dopamine depletions. These results suggest that a combination of a COX-2 inhibitor with creatine might be a useful neuroprotective strategy for PD.

This is a preview of subscription content, log in to check access.

References

  1. Adams J., Collaco-Moraes Y., and de Belleroche J. (1996) Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J. Neurochem. 66, 6–13.

    PubMed  CAS  Article  Google Scholar 

  2. Almer G., Guegan C., Teismann P., Naini A., Rosoklija G., Hays A. P., et al. (2001) Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol. 49, 176–185.

    PubMed  Article  CAS  Google Scholar 

  3. Bal-Price A., Matthias A., and Brown G. C. (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J. Neurochem. 80, 73–80.

    PubMed  Article  CAS  Google Scholar 

  4. Beal M. F. (2001) Experimental models of Parkinson’s disease. Nat. Rev. Neurosci. 2, 325–334.

    PubMed  Article  CAS  Google Scholar 

  5. Betarbet R., Sherer T. B., MacKenzie G., Garcia-Osuna M., Panov A. V., and Greenamyre J. T. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s Disease. Nat Neurosci. 3, 1301–1306.

    PubMed  Article  CAS  Google Scholar 

  6. Blum-Degen D., Muller T., Kuhn W., Gerlach M., Przuntek H., and Riederer P. (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20.

    PubMed  Article  CAS  Google Scholar 

  7. Cao X. and Phillis J. (1994) a-Phenyl-tert-butyl nitrone reduced cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 644, 267–272.

    PubMed  Article  CAS  Google Scholar 

  8. Cicchetti F., Brownell A. L., Williams K., Chen Y. I., Livni E., and Isacson O. (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur. J. Neurosci. 15, 991–998.

    PubMed  Article  CAS  Google Scholar 

  9. Du Y., Ma Z., Lin S., Dodel R. C., Gao F., Bales K. R., Triarhou L. C., et al. (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 98, 14669–14674.

    PubMed  Article  CAS  Google Scholar 

  10. Ferrante R. J., Andreassen O. A., Dedeoglu A., Ferrante K. L., Jenkins B. G., Hersch S. M., et al. (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 22, 1592–1599.

    PubMed  CAS  Google Scholar 

  11. Fitzgerald G. A. and Patrono C. (2001) The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 345, 433–442.

    PubMed  Article  CAS  Google Scholar 

  12. Gao H. M., Hong J. S., Zhang W., and Liu B. (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782–790.

    PubMed  CAS  Google Scholar 

  13. Gluck M. R., Youngster S. K., Ramsay R. R., Singer T. P., and Nicklas W. J. (1994) Studies on the characterization of the inhibitory mechanism of 4′-alkylated 1-methyl-4-phenylpyridinium and phenylpyridine analogues in mitochondria and electron transport particles. J. Neurochem. 63, 655–661.

    PubMed  CAS  Article  Google Scholar 

  14. Hewett S. J., Uliasz T. F., Vidwans A. S., and Hewett J. A. (2000) Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J. Pharmacol. Exp. Ther. 293, 417–425.

    PubMed  CAS  Google Scholar 

  15. Ho L., Osaka H., Aisen P. S., and Pasinetti G. M. (1998) Induction of cyclooxygenase (COX)-2 but not COX-1 gene expression in apoptotic cell death. J. Neuroimmunol. 89, 142–149.

    PubMed  Article  CAS  Google Scholar 

  16. Hunot S., Dugas N., Faucheux B., Hartmann A., Tardieu M., Debre P., et al. (1999) FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 19, 3440–3447.

    PubMed  CAS  Google Scholar 

  17. Iadecola C., Niwa K., Nogawa S., Zhao X., Nagayama M., Araki E., et al. (2001) Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc. Natl. Acad. Sci. USA 98, 1294–1299.

    PubMed  Article  CAS  Google Scholar 

  18. Kelley K. A., Ho L., Winger D., Freire-Moar J., Borelli C. B., Aisen P. S., et al. (1999) Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am. J. Pathol. 155, 995–1004.

    PubMed  CAS  Google Scholar 

  19. Klevenyi P., Andreassen O., Ferrante R. J., Schleicher J. R., Jr., Friedlander R. M., and Beal M. F. (1999) Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport. 10, 635–638.

    PubMed  Article  CAS  Google Scholar 

  20. Kohutnicka M., Lewandowska E., Kurkowska-Jastrzebska I., Czlonkowski A., and Czlonkowska A. (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39, 167–180.

    PubMed  Article  CAS  Google Scholar 

  21. Kriz J., Gowing C., and Julien JP. (2003) Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann. Neurol. 53, 429–436.

    PubMed  Article  CAS  Google Scholar 

  22. Kurkowska-Jastrzebska I., Wronska A., Kohutnicka M., Czlonkowski A., and Czlonkowska A. (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50–61.

    PubMed  Article  CAS  Google Scholar 

  23. Langston J. W., Forno L. S., Tetrud J., Reeves A. G., Kaplan J. A., and Karluk D. (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans yr after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46, 598–605.

    PubMed  Article  CAS  Google Scholar 

  24. Matthews R. T., Ferrante R. J., Klivenyi P., Yang L., Klein A. M., Mueller G., et al. (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157, 142–149.

    PubMed  Article  CAS  Google Scholar 

  25. McGeer P. L., Yasojima K., and McGeer E. G. (2001) Inflammation in Parkinson’s disease. Adv. Neurol. 86, 83–89.

    PubMed  CAS  Google Scholar 

  26. McGeer P. L., Yasojima K., and McGeer E. G. (2002) Association of interleukin-1beta polymorphisms with idiopathic Parkinson’s disease. Neurosci. Lett. 326, 67–69.

    PubMed  Article  CAS  Google Scholar 

  27. McGeer P. L., Itagaki S., Boyes B. E., and McGeer E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 38, 1285–1291.

    PubMed  CAS  Google Scholar 

  28. Mogi M., Harada M., Riederer P., Narabayashi H., Fujita K., and Nagatsu T. (1994b) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208–210.

    PubMed  Article  CAS  Google Scholar 

  29. Mogi M., Harada M., Narabayashi H., Inagaki H., Minami M., and Nagatsu T. (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci. Lett. 211, 13–16.

    PubMed  Article  CAS  Google Scholar 

  30. Mogi M., Harada M., Kondo T., Riederer P., Inagaki H., Minami M., and Nagatsu T. (1994a) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147–150.

    PubMed  Article  CAS  Google Scholar 

  31. Mogi M., Togari A., Ogawa M., Ikeguchi K., Shizuma N., Fan D., et al. (1998) Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1beta and nerve growth factor in the striatum. Neurosci. Lett. 250, 25–28.

    PubMed  Article  CAS  Google Scholar 

  32. Muller T., Blum-Degen D., Przuntek H., and Kuhn W. (1998) Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Acta Neurol. Scand. 98, 142–144.

    PubMed  CAS  Article  Google Scholar 

  33. O’Banion M. K., Miller J. C., Chang J. W., Kaplan M. D., and Coleman P. D. (1996) Interleukin-1 beta induces prostaglandin G/H synthase-2 (cyclooxygenase- 2) in primary murine astrocyte cultures. J. Neurochem. 66, 2532–2540.

    PubMed  CAS  Article  Google Scholar 

  34. O’Gorman E., Beutner G., Dolder M., Koretsky A. P., Brdiczka D., and Wallimann T. (1997) The role of creatine kinase inhibition of mitochondrial permeability transition. FEBS Lett. 414, 253–257.

    PubMed  Article  CAS  Google Scholar 

  35. Planas A. M., Soriano M. A., Justicin C., and Rodriguez-Farre E. (1999) Induction of cyclooxygenase-2 in the rat brain after a mild episode of focal ischemia without tissue inflammation or neural cell damage. Neurosci. Lett. 275, 141–144.

    PubMed  Article  CAS  Google Scholar 

  36. Saporito M. S., Thomas B. A., and Scott R. W. (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75, 1200–1208.

    PubMed  Article  CAS  Google Scholar 

  37. Saporito M. S., Brown E. M., Miller M. S., and Carswell S. (1999) CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther. 288, 421–427.

    PubMed  CAS  Google Scholar 

  38. Schulte T., Schols L., Muller T., Woitalla D., Berger K., and Kruger R. (2002) Polymorphisms in the interleukin-1 alpha and beta genes and the risk for Parkinson’s disease. Neurosci. Lett. 326, 70–72.

    PubMed  Article  CAS  Google Scholar 

  39. Smith W. L., DeWitt D. L., and Garavito R. M. (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182.

    PubMed  Article  CAS  Google Scholar 

  40. Teismann P. and Ferger B. (2001) Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 39, 167–174.

    PubMed  Article  CAS  Google Scholar 

  41. Teismann P., Tieu K., Choi D.K., Wu D.C., Naini A., Hunot S., et al. (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl. Acad. Sci. USA 100, 5473–5478.

    PubMed  Article  CAS  Google Scholar 

  42. Wendt S., Dedeoglu A., Speer O., Wallimann T., Beal M. F., and Andreassen O. A. (2002) Reduced creatine kinase activity in transgenic amyotrophic lateral sclerosis mice. Free Radic. Biol. Med. 32, 920–926.

    PubMed  Article  CAS  Google Scholar 

  43. Wu H., Kanatous S. B., Thurmond F. A., Gallardo T., Isotani E., Bassel-Duby R., et al. (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296, 349–352.

    PubMed  Article  CAS  Google Scholar 

  44. Xu C. J., Klunk W. E., Kanfer J. N., Xiong Q., Miller G., and Pettegrew J. W. (1996) Phosphocreatine-dependent glutamate uptake by synaptic vesicles. J. Biol. Chem. 271, 13435–13440.

    PubMed  Article  CAS  Google Scholar 

  45. Zhang W., Narayanan M., Friedlander R.M. (2003) Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann. Neurol. 53, 267–270.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Flint Beal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klivenyi, P., Gardian, G., Calingasan, N.Y. et al. Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Mol Neurosci 21, 191–198 (2003). https://doi.org/10.1385/JMN:21:3:191

Download citation

Index Entries

  • Inflammation
  • free radicals
  • mitochondria
  • cyclooxygenase
  • creatine
  • Parkinson’s disease