Skip to main content
Log in

Effects of the vasoactive intestinal peptide (VIP) and related peptides on glioblastoma cell growth in vitro

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The growth rate of numerous cancer cell lines is regulated in part by actions of neuropeptides of the vasoactive intestinal peptide (VIP) family, which also includes pituitary adenylate cyclase-activating peptide (PACAP), glucagon, and peptide histidine/isoleucine (PHI). The aim of this work was to investigate the effect of these peptides on the growth of the rat glioblastoma cell line C6 in vitro. We also sought to determine which binding sites were correlated with the effects observed. Proliferation studies performed by means of a CyQuant™ assay showed that VIP and PACAP strongly stimulated C6 cell proliferation at most of the concentrations tested, whereas PHI increased cell proliferation only when associated with VIP. Two growth hormone-releasing factor (GRF) derivatives and the VIP antagonist hybrid peptide neurotensin-VIP were able to inhibit VIP-induced cell growth stimulation, even at very low concentrations. Binding experiments carried out on intact cultured C6 cells, using 125I-labeled VIP and PACAP as tracers, revealed that the effects of the peptides on cell growth were correlated with the expression on C6 cells of polyvalent high-affinity VIP-PACAP binding sites and of a second subtype corresponding to very high-affinity VIP-selective binding species. The latter subtype, which interacted poorly with PACAP with a 10,000-fold lower affinity than VIP, might mediate the antagonist effects of neurotensin-VIP and of both GRF derivatives on VIP-induced cell growth stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammirati M., Vick N., Liao Y. L., Ciric I., and Mikhael M. (1987) Effects of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplasic astrocytomas. Neurosurgery 21, 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity dependent neuroprotective peptide. J. Neurochem. 72(3), 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Giladi E., Davidson A., Wollman Y., Pitman J., et al. (1998) The identification of secreted heat shock 60-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci. Lett. 250(1), 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Bateman D. E., McDermott J. R., Perry R. H., Dimaline R., Biggins J. A., and Edwardson J. A. (1986) Neuropeptides in gliomas: identification of somatostatin 14 in a medulloblastoma. J. Neurol. Neurosurg. Psychiatry 49(9), 1074–1076.

    Article  PubMed  CAS  Google Scholar 

  • Benda P., Lightbody J., Sato G., Levine L., and Sweet W. (1968) Differentiated rat cell strain in tissue culture. Science 161, 370–371.

    Article  PubMed  CAS  Google Scholar 

  • Bohnen N. I., Radhakrishnan K., O’Neil B. P., and Kurland L. T. (1997) Descriptive and analytic epidemiology of brain tumors, in Cancer of the Nervous System, Black, P. M. and Loeffler, J. S., eds., Blackwell Scientific, Cambridge, MA, pp. 3–24.

    Google Scholar 

  • Brenneman D. E., Glazner G., Hill J. M., Hauser J., Davidson A., and Gozes I. (1998) VIP neurotrophism in the central nervous system: multiple effectors and identification of a femtomolar-acting neuroprotective peptide. Ann. NY Acad. Sci. 865, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Gozes I. (1996) A femtomolar-acting neuroprotectice peptide. J. Clin. Invest. 97(10), 2299–2307.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Neale E. A., Foster G. A., D’Autremont S., and Westbrook G. L. (1987) Non neuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J. Cell Biol. 104, 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E., Nicol T., Warren D., and Bowes L. M. (1990) Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen. J. Neurosci. Res. 25, 386–394.

    Article  PubMed  CAS  Google Scholar 

  • Chneiweiss H., Glowinski J., and Premont J. (1986) Do secretin and vasoactive intestinal peptide have independent receptors on striatal neurons and glial cells in primary culture? J. Neurochem. 47(2), 608–613.

    Article  PubMed  CAS  Google Scholar 

  • Fabry M., Cabrele C., Hocker H., and Beck-Sickinger A. (2000) Differently labeled peptide ligands for rapid investigation of receptor expression on a new human glioblastoma cell line. Peptides 21, 1885–1893.

    Article  PubMed  CAS  Google Scholar 

  • Gelber E., Granoth R., Fridkin M., Dreznik Z., Brenneman D. E., Moody T. W., and Gozes I. (2001) A lipophilic vasoactive intestinal peptide analog enhances the antiproliferative effect of chemotherapeutic agents on cancer cell lines. Cancer 92(8), 2172–2180.

    Article  PubMed  CAS  Google Scholar 

  • Gourlet P., Vandermeers A., Vertongen P., Rathe J., DeNeef P., Cnudde J., et al. (1997) Development of high-affinity selective VIP1 receptor agonists. Peptides 18(10), 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (1993) Neuropeptides as growth and differentiation factors in general and VIP in particular. J. Mol. Neurosci. 4, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (1996) Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J. Mol. Neurosci. 7(4), 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., Fridkin M., and Brenneman D. E. (1995) A VIP hybrid antagonist: from developmental neurobiology to clinical applications. Cell. Mol. Neurobiol. 15(6), 675–687.

    Article  PubMed  CAS  Google Scholar 

  • Gozes I., McCune S. K., Jacobson L., Warren D., Moody T. W., Fridkin M., and Brennemen D. E. (1991) An antagonist to vasoactive intestinal peptide affects cellular functions in the central nervous system. J. Pharmacol. Exp. Ther. 257, 959–966.

    PubMed  CAS  Google Scholar 

  • Gressens P., Hill J. M., Gozes I., Fridkin M., and Brenneman D. E. (1993) Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature 362, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Koh S. W. (1991) Signal transduction through the vasoactive intestinal peptide receptor stimulate phosphorylation of the tyrosine kinase pp60c-src. Biochem. Biophys. Res. Commun. 174, 452–458.

    Article  PubMed  CAS  Google Scholar 

  • Kong L. Y., Marderdrut J. L., Leohn G. H., and Hong J. S. (1999) Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron-glia cultures by femtomolar concentrations of pituitary adenylate-cyclase activating polypeptide. Neuroscience 91(2), 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M., Amiranoff B., Boige N., Rouyer-Fessard C., Tatemoto K., and Moroder L. (1983) Interaction of GRF with VIP receptors and stimulation of adenylate cyclase in rat and human intestinal epithelial membranes. Comparison with PHI and secretin. FEBS Lett. 159, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Lelièvre V., Meunier A. C., Caigneaux E., Falcon J., and Muller J. M. (1998) Differential expression and function of PACAP and VIP receptors in four human colonic adenocarcinoma cell lines. Cell. Signal. 10(1), 13–26.

    Article  PubMed  Google Scholar 

  • Lelièvre V., Pineau N., Du J., Wen C. H., Nguyen T., Janet T., et al. (1998) Differential effects of peptide histidine isoleucine (PHI) and related peptides on stimulation and suppression of neuroblastoma cell proliferation. J. Biol. Chem. 273, 19,685–19,690.

    Article  Google Scholar 

  • Lilling G., Wollman Y., Goldstein M.N., Rubinraut S., Fridkin M., Brenneman D. E., and Gozes I. (1994) Inhibition of human neuroblastoma growth by a specific VIP antagonist. J. Mol. Neurosci. 5, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Martin J. L., Rose K., Hugues G. J., and Magistretti P. J. (1986) [Mono[125I]iodo-Tyr10-MetO17]-vasoactive intestinal polypeptide. J. Biol. Chem. 261, 5320–5327.

    PubMed  CAS  Google Scholar 

  • Moody T. W., Zia F., Draoui M., Brenneman D. E., Fridkin M., Davidson A., and Gozes I. (1993) A vasoactive intestinal peptide antagonist inhibits non-small cell lung cancer growth. Proc. Natl. Acad. Sci. USA 90, 4345–4349.

    Article  PubMed  CAS  Google Scholar 

  • Moyer M. P., Aust J. B., Dixon P. S., Levine B. A., and Sirinek K. R. (1985) Glucagon enhances growth of cultured human colorectal cancer cells in vitro. Am. J. Surg. 150, 676–679.

    Article  PubMed  CAS  Google Scholar 

  • Muller J. M., Lelièvre V., Becq-Giraudon L., and Meunier A. C. (1995) VIP as cell-growth and differentiation neuromodulator role in neurodevelopment. Mol. Neurobiol. 10, 115–134.

    Article  PubMed  CAS  Google Scholar 

  • Muller J. M., Lolait S. J., Yu V. C., Sadee W., and Waschek J. A. (1989) Functional receptors in human neuroblastoma subclones that express VIP precursor mRNA and release VIP-like substances. J. Biol. Chem. 264, 3647–3650.

    PubMed  CAS  Google Scholar 

  • Nielsen F. C., Gammeltoft S., Westermark B., and Fahrenkrug J. (1990) High affinity receptors for vasoactive intestinal peptide on a human glioma cell lines. Peptides 11(6), 1225–1231.

    Article  PubMed  CAS  Google Scholar 

  • O’Dorisio S. M., Fleshmann D. J., Qhalman S. J., and O’Dorisio T. M. (1992) Vasoactive intestinal peptide: autocrine growth factor in neuroblastoma. Regul. Pept. 37, 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Sherki Y., Melamed E., Fridkin M., Brenneman D. E., and Gozes I. (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res. 854(1–2), 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Pavelic K. and Pavelic J. (1980) Glucagon suppressed proliferation rate of mammary aplastic carcinoma in mice. Horm. Metab. Res. 12, 243–246.

    PubMed  CAS  Google Scholar 

  • Pineau N., Lelievre V., Goursaud S., Hilairet S., Waschek J. A., Janet T., and Muller J. M. (2001) The polypeptide PHI discriminates a GTP-insensitive form of VIP receptor in liver membranes. Neuropeptides 35, 1–10.

    Article  Google Scholar 

  • Robberecht P., Coy D. H., Waelbroeck M., Heiman M. L., De Neef P., Camus J. C., and Christophe J. (1985) Structural requirements for the activation of rat anterior pituitary adenylate cyclase by growth hormone-releasing factor (GRF): discovery of (N-Ac-Tyr1, D-Arg2)-GRF(1-29)-NH2 as a GRF antagonist on membranes. Endocrinology 117(5), 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht P., Gourlet P., Vertongen P., and Svoboda M. (1996) Characterization of the VIP receptor from SUP T1 lymphoblasts. Adv. Neuroimmunol. 6, 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht P., Waelbroeck M., Coy D., De Neef P., Camus J. C., and Christophe J. (1986) Comparative structural requirements of thirty GRF analogs for interaction with GRF and VIP receptors and coupling to adenylate cyclase in rat adenopituitary, liver and pancreas. Peptides 7, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht P., Woussen-Colle M. C., Vertongen P., De Neef P., Hou X., Salmon I., and Brotchi J. (1994) Expression of pituitary adenylate cyclase activating polypeptide (PACAP) receptors in human glial cell tumors. Peptides 15(4), 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Said S. I. and Mutt V. (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169, 1217–1218.

    Article  PubMed  CAS  Google Scholar 

  • Sharma A., Walters J., Gozes Y., Fridkin M., Brenneman D., Gozes I., and Moody T. W. (2001) A vasoactive intestinal polypeptide antagonist unhibits the growth of glioblastoma cells. J. Mol. Neurosci. 17(3), 331–339.

    Article  PubMed  CAS  Google Scholar 

  • Vertongen P., Cambry I., Darro F., Kiss R., and Robberecht P. (1996) VIP and pituitary adenylate cyclase activating polypeptide (PACAP) have an antiproliferative effect on the T98G human glioblastoma cell line through interaction with VIP2 receptor. Neuropeptides 30(5), 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Vertongen P., De Clerck P., Fournet J. C., Martelli H., Helardot P., Devalck C., et al. (1997) Comparison between vasoactive intestinal polypeptide and pituitary adenylate cyclase activating polypeptide levels in neuroblastoma tumour tissues. Neuropeptides 31(5), 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Waelbroeck M., Robberecht P., Coy D. H., Camus J. C., De Neef P., and Christophe J. (1985) Interaction of growth hormone-releasing factor (GRF) and 14 GRF analogues with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N-Ac-Tyr1, D-Phe2)-GRF(1-29)-NH2 as a VIP antagonist. Endocrinology 116(6), 2643–2649.

    PubMed  CAS  Google Scholar 

  • Waschek J. A., Dicicco-Bloom E., Lelievre V., Zhou X., and Hu Z. (2000) PACAP action in nervous system development, regeneration and neuroblastoma cell proliferation. Ann. NY Acad. Sci. 921, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Waschek J. A., Lelievre V., Bravo D. T., Nguyen T., and Muller J. M. (1997) Retinoic acid regulation of the VIP and PACAP autocrine ligand and receptor system in human neuroblastoma cell lines. Peptides 18(6), 835–841.

    Article  PubMed  CAS  Google Scholar 

  • Yu D., Seitz P. K., Selvanayagam P., Rajaraman S., Townsend C. M., and Cooper C. W. (1992) Effects of vasoactive intestinal peptide on adenosine 3′,5′-monophosphate ornithine decarboxylase and cell growth in a human colon cell line. Endocrinology 131, 1188–1194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufes, C., Alleaume, C., Montoni, A. et al. Effects of the vasoactive intestinal peptide (VIP) and related peptides on glioblastoma cell growth in vitro. J Mol Neurosci 21, 91–102 (2003). https://doi.org/10.1385/JMN:21:2:91

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:21:2:91

Index Entries

Navigation