Skip to main content
Log in

Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus

Lack of effect of photic entrainment and disruption by constant light

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The circadian clock cells of the mammalian suprachiasmatic nucleus (SCN) generate oscillations in physiology and behavior that are synchronized (entrained) by the external light/dark (LD) cycle. The mechanisms that mediate the effect of light on the core molecular mechanism of the clock are not well understood, but evidence suggests that the Period2 gene, which encodes a key clock regulator (PER2), might be involved. We assessed the expression of PER2 immunoreactivity in the retinorecipient core and shell compartments of the SCN of rats entrained to cycles of discrete light pulses presented at the early subjective day (dawn) or night (dusk), or housed in constant light. We found that in animals entrained to a 0.5 h:23.5-h LD cycle (light falls near dawn), PER2 expression is rhythmic both in the shell and in the core regions of the SCN and indistinguishable from that seen in the SCN of control rats housed in complete darkness. Similarly, the pattern of PER2 expression in the SCN of rats entrained to a 0.5-h:25.5-h LD cycle (light falls near dusk) resembled that in dark-housed controls. We also found that presentation of a discrete light pulse in the early subjective night did not induce PER2 protein expression in the SCN, even 6 h after photic stimulation. Finally, in constant light-housed, behaviorally arrhythmic rats, PER2 expression in the SCN was low and nonrhythmic. These results show that rhythmic PER2 expression occurs both in the shell and core regions of the rat SCN. Furthermore, they show that the expression of PER2 in the SCN is not regulated by entraining light. Finally, constant light-induced behavioral arrhythmicity is associated with a disruption of rhythmic PER2 expression in the whole SCN. Together, the results are consistent with a proposed role for PER2 in the core mechanism of the circadian clock but argue against an important role for PER2 in the mechanism mediating photic entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham U., Albrecht U., Gwinner E., and Brandstatter R. (2002) Spatial and temporal variation of passer Per2 gene expression in two distinct cell groups of the suprachiasmatic hypothalamus in the house sparrow (Passer domesticus). Eur. J. Neurosci. 16, 429–436.

    Article  PubMed  Google Scholar 

  • Albrecht U., Sun Z. S., Eichele G., and Lee C. C. (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht U., Zheng B., Larkin D., Sun Z. S., and Lee C. C. (2001) mPer1 and mper2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16, 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Allada R., Emery P., Takahashi J. S., and Rosbash M. (2001) Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–1119.

    Article  PubMed  CAS  Google Scholar 

  • Arvanitogiannis A., Robinson B., Beaulé C., and Amir S. (2000) Calbindin-D28k immunoreactivity in the suprachiasmatic nucleus and the circadian response to constant light in the rat. Neuroscience 99, 397–401.

    Article  PubMed  CAS  Google Scholar 

  • Bae K. and Weaver D. R. (2003) Light-induced phase shifts in mice lacking mPER1 or mPER2. J. Biol. Rhythms 18, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Bae K., Jin X., Maywood E. S., Hastings M. H., Reppert S. M., and Weaver D. R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536.

    Article  PubMed  CAS  Google Scholar 

  • Beaulé C. and Amir S. (1999) Photic entrainment and induction of immediate-early genes within the rat circadian system. Brain Res. 821, 95–100.

    Article  PubMed  Google Scholar 

  • Beaulé C. and Amir S. (2001) Photic regulation of circadian rhythms and the expression of p75 neurotrophin receptor immunoreactivity in the suprachiasmatic nucleus in rats. Brain Res. 894, 301–306.

    Article  PubMed  Google Scholar 

  • Beaulé C., Arvanitogiannis A., and Amir S. (2001) Light suppresses Fos expression in the shell region of the suprachiasmatic nucleus at dusk and dawn: implications for photic entrainment of circadian rhythms. Neuroscience 106, 249–254.

    Article  PubMed  Google Scholar 

  • Dardente H., Klosen P., Caldelas I., Pevet P., and Masson-Pevet M. (2002a) Phenotype of Per1- and Per2-expressing neurons in the suprachiasmatic nucleus of a diurnal rodent (Arvicanthis ansorgei): comparison with a nocturnal species, the rat. Cell Tissue Res. 310, 85–92.

    Article  PubMed  Google Scholar 

  • Dardente H., Poirel V. J., Klosen P., Pevet P., and Masson-Pevet M. (2002b) Per and neuropeptide expression in the rat suprachiasmatic nuclei: compartmentalization and differential cellular induction by light. Brain Res. 958, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey P. J. (1986) Light-sampling behavior in photoentrainment of a rodent circadian rhythm. J. Comp. Physiol. [A] 159, 161–169.

    Article  CAS  Google Scholar 

  • Devlin P. F. and Kay S. A. (2001) Circadian photoperception. Annu. Rev. Physiol. 63, 677–694.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap J. C. (1999) Molecular bases for circadian clocks. Cell 96, 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein K. and Amir S. (1996) Constant light induces persistent Fos expression in rat intergeniculate leaflet. Brain Res. 731, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein K. and Amir S. (1999) The role of the intergeniculate leaflet in entrainment of circadian rhythms to a skeleton photoperiod. J. Neurosci. 19, 372–380.

    PubMed  CAS  Google Scholar 

  • Edelstein K., Pfaus J. G., Rusak B., and Amir S. (1995) Neonatal monosodium glutamate treatment prevents effects of constant light on circadian temperature rhythms of adult rats. Brain Res. 675, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Field M. D., Maywood E. S., O’Brien J. A., Weaver D. R., Reppert S. M., and Hastings M. H. (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Gekakis N., Staknis D., Nguyen H. B., Davis F. C., Wilsbacher L. D., King D. P., et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569.

    Article  PubMed  CAS  Google Scholar 

  • Griffin E. A., Jr., Staknis D., and Weitz C. J. (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771.

    Article  PubMed  CAS  Google Scholar 

  • Hall J. C. (2000) Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr. Opin. Neurobiol. 10, 456–466.

    Article  PubMed  CAS  Google Scholar 

  • Hamada T., LeSauter J., Venuti J. M., and Silver R. (2001) Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J. Neurosci. 21, 7742–7750.

    PubMed  CAS  Google Scholar 

  • Hannibal J. (2002) Neurotransmitters of the retinohypothalamic tract. Cell Tissue Res. 309, 73–88.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J., Jamen F., Nielsen H. S., Journot L., Brabet P., and Fahrenkrug J. (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J. Neurosci. 21, 4883–4890.

    PubMed  CAS  Google Scholar 

  • Kalsbeek A. and Buijs R. M. (2002) Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res. 309, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • King D. P. and Takahashi J. S. (2000) Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 23, 713–742.

    Article  PubMed  CAS  Google Scholar 

  • Klein D., Moore R. Y., and Reppert S. M., eds (1991) Suprachiasmatic Nucleus: The Mind’s Clock. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Kume K., Zylka M. J., Sriram S., Shearman L. P., Weaver D. R., Jin X., et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Leak R. K. and Moore R. Y. (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J. Comp. Neurol. 433, 312–334.

    Article  PubMed  CAS  Google Scholar 

  • Leak R. K., Card J. P., and Moore R. Y. (1999) Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res. 819, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • LeSauter J. and Silver R. (1999) Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J. Neurosci. 19, 5574–5585.

    PubMed  CAS  Google Scholar 

  • Lincoln G., Messager S., Andersson H., and Hazlerigg D. (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc. Natl. Acad. Sci. USA 99, 13890–13895.

    Article  PubMed  CAS  Google Scholar 

  • Lowrey P. L. and Takahashi J. S. (2000) Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34, 533–562.

    Article  PubMed  CAS  Google Scholar 

  • Mason R. (1991) The effects of continuous light exposure on Syrian hamster suprachiasmatic (SCN) neuronal discharge activity in vitro. Neurosci. Lett. 123, 160–163.

    Article  PubMed  CAS  Google Scholar 

  • Miyake S., Sumi Y., Yan L., Takekida S., Fukuyama T., Ishida Y., et al. (2000) Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci. Lett. 294, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Moga M. M. and Moore R. Y. (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J. Comp. Neurol. 389, 508–534.

    Article  PubMed  CAS  Google Scholar 

  • Moore R. Y., Speh J. C., and Leak R. K. (2002) Suprachiasmatic nucleus organization. Cell Tissue Res. 309, 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Morin L. P. (1994) The circadian visual system. Brain Res. Brain Res. Rev. 19, 102–127.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N. (1999) Masking: history, definitions, and measurement. Chronobiol. Int. 16, 415–429.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N., Foster R. G., and Salmon P. A. (1999) Thresholds for masking responses to light in three strains of retinally degenerate mice. J. Comp. Physiol. [A] 184, 423–428.

    Article  CAS  Google Scholar 

  • Namihira M., Honma S., Abe H., Tanahashi Y., Ikeda M., and Honma K. (1999) Daily variation and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the pineal body and different areas of brain in rats. Neurosci. Lett. 267, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Okamura H., Miyake S., Sumi Y., Yamaguchi S., Yasui A., Muijtjens M., et al. (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286, 2531–2534.

    Article  PubMed  CAS  Google Scholar 

  • Pando M. P., Pinchak A. B., Cermakian N., and Sassone-Corsi P. (2001) A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. USA 98, 10178–10183.

    Article  PubMed  CAS  Google Scholar 

  • Pennartz C. M., de Jeu M. T., Bos N. P., Schaap J., and Geurtsen A. M. (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh C. S. and Daan S. (1976a) A functional analysis of circadian pacemakers in nocturnal rodents: V. Pacemaker structure: A clock for all seasons. J. Comp. Physiol. [A] 106, 333–355.

    Article  Google Scholar 

  • Pittendrigh C. S. and Daan S. (1976b) A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. J. Comp. Physiol. [A] 106, 291–331.

    Article  Google Scholar 

  • Rea M. A. (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol. Int. 15, 395–423.

    Article  PubMed  CAS  Google Scholar 

  • Redlin U. (2001) Neural basis and biological function of masking by light in mammals: suppression of melatonin and locomotor activity. Chronobiol. Int. 18, 737–758.

    Article  PubMed  CAS  Google Scholar 

  • Redlin U. and Mrosovsky N. (1999) Masking of locomotor activity in hamsters. J. Comp. Physiol. [A] 184, 429–437.

    Article  CAS  Google Scholar 

  • Reppert S. M. and Weaver D. R. (2001) Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676.

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser A. M., Boulos Z., and Terman M. (1983) Circadian feeding and drinking rhythms in the rat under complete and skeleton photoperiods. Physiol. Behav. 30, 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B., et al. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Shearman L. P., Zylka M. J., Weaver D. R., Kolakowski L. F., Jr., and Reppert S. M. (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura H., Moriya T., Sudo M., Wakamatsu H., Akiyama M., Miyake Y., and Shibata S. (2001) Differential daily expression of Per1 and Per2 mRNA in the suprachiasmatic nucleus of fetal and early postnatal mice. Eur. J. Neurosci. 13, 687–693.

    Article  PubMed  CAS  Google Scholar 

  • Stephan F. K. (1983) Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods. Physiol. Behav. 30, 451–462.

    Article  PubMed  CAS  Google Scholar 

  • Sumova A. and Illnerova H. (1998) Photic resetting of intrinsic rhythmicity of the rat suprachiasmatic nucleus under various photoperiods. Am. J. Physiol. 274, R857-R863.

    PubMed  CAS  Google Scholar 

  • Sumova A., Jac M., Sladek M., Sauman I., and Illnerova H. (2003) Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod. J. Biol. Rhythms 18, 134–144.

    Article  PubMed  CAS  Google Scholar 

  • Sumova A., Travnickova Z., and Illnerova H. (2000) Spontaneous c-Fos rhythm in the rat suprachiasmatic nucleus: location and effect of photoperiod. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R2262-R2269.

    PubMed  CAS  Google Scholar 

  • Takata M., Burioka N., Ohdo S., Takane H., Terazono H., Miyata M., et al. (2002) Daily expression of mRNAs for the mammalian clock genes Per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn. J. Pharmacol. 90, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Tournier B. B., Menet J. S., Dardente H., Poirel V. J., Malan A., Masson-Pevet M., et al. (2003) Photoperiod differentially regulates clock genes’ expression in the suprachiasmatic nucleus of Syrian hamster. Neuroscience 118, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • van Esseveldt K. E., Lehman M. N., and Boer G. J. (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res. Brain Res. Rev. 33, 34–77.

    Article  PubMed  Google Scholar 

  • Wakamatsu H., Takahashi S., Moriya T., Inouye S. T., Okamura H., Akiyama M., and Shibata S. (2001) Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift. Neuroreport 12, 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Welsh D. K., Logothetis D. E., Meister M., and Reppert S. M. (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Yan L. and Silver R. (2002) Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur. J. Neurosci. 16, 1531–1540.

    Article  PubMed  Google Scholar 

  • Yan L., Takekida S., Shigeyoshi Y., and Okamura H. (1999) Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94, 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Zheng B., Albrecht U., Kaasik K., Sage M., Lu W., Vaishnav S., et al. (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694.

    Article  PubMed  CAS  Google Scholar 

  • Zheng B., Larkin D. W., Albrecht U., Sun Z. S., Sage M., Eichele G., et al. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Zlomanczuk P., Margraf R. R., and Lynch G. R. (1991) In vitro electrical activity in the suprachiasmatic nucleus following splitting and masking of wheel-running behavior. Brain Res. 559, 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Zordan M. A., Rosato E., Piccin A., and Foster R. (2001) Photic entrainment of the circadian clock: from Drosophila to mammals. Semin. Cell Dev. Biol. 12, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Zylka M. J., Shearman L. P., Weaver D. R., and Reppert S. M. (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaulé, C., Houle, L.M. & Amir, S. Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus. J Mol Neurosci 21, 133–147 (2003). https://doi.org/10.1385/JMN:21:2:133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:21:2:133

Index Entries

Navigation