Skip to main content

Advertisement

Log in

Discovery of compounds that will prevent tau pathology

  • Lead Discovery And Optimization
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Tau is certainly a reasonable target for the development of compounds to prevent neurofibrillary pathology, particularly in the fronto-temporal dementias. Although the mechanism of the filamentous accumulations remains unclear, sufficient knowledge is in place to move forward with high throughput screens. In fact, the development of compounds from such screens will ultimately be the only way to validate the target. The dichotomy for such screens is that in vitro screens are easier to design, but require more assumptions as to the mechanism, in contrast to cell-based screens that are more difficult to design, but make fewer assumptions about mechanism. We have designed a moderate throughput for tau binding that relies on fluorescence detection in living cells and an in vitro cdk5/p25 tau phosphorylation high throughput screen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackmann M., Wiech H., and Mandelkow E. (2000) Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation [in process citation]. J. Biol. Chem. 275, 30,335.

    Article  CAS  Google Scholar 

  • Arioka M., Tsukamoto M., Ishiguro K., Kato R., Sato K., Imahori K., et al. (1993) Tau protein kinase II is involved in the regulation of the normal phosphorylation state of tau protein. J. Neurochem. 60, 461.

    Article  PubMed  CAS  Google Scholar 

  • Baumann K., Mandelkow E. M., Biernat J., Piwnica-Worms H., and Mandelkow E. (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336, 417.

    Article  PubMed  CAS  Google Scholar 

  • Borghi R., Giliberto L., Assini A., Delacourte A., Perry G., Smith M. A., et al. (2002) Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology 58, 589.

    PubMed  CAS  Google Scholar 

  • Bugiani O., Murrell J. R., Giaccone G., Hasegawa M., Ghigo G., Tabaton M., et al. (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J. Neuropathol. Exp. Neurol. 58, 667.

    Article  PubMed  CAS  Google Scholar 

  • Chen J., Kanai Y., Cowan N., and Hirokawa N. (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360, 674.

    Article  PubMed  CAS  Google Scholar 

  • D’Souza I., Poorkaj P., Hong M., Nochlin D., Lee V. M., Bird T. D., et al. (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl. Acad. Sci. USA 96, 5598.

    Article  PubMed  CAS  Google Scholar 

  • Evans D. B., Rank K. B., Bhattacharya K., Thomsen D. R., Gurney M. E., and Sharma S. K. (2000) Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau’s ability to promote microtubule assembly. J. Biol. Chem. 275, 24,977.

    CAS  Google Scholar 

  • Ferreira A., Lu Q., Orecchio L., and Kosik K. S. (1997) Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar A beta. Mol. Cell. Neurosci. 9, 220.

    Article  PubMed  CAS  Google Scholar 

  • Foster N. L., Wilhelmsen K., Sima A. A., Jones M. Z., D’Amato C. J., and Gilman S. (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann. Neurol. 41, 706.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M., Spillantini M. G., Jakes R., Rutherford D., and Crowther R. A. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M., Jakes R., Crowther R.A., Cohen P., Vanmechelen E., Vandermeeren M., and Cras P. (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem. J. 301, 871.

    PubMed  CAS  Google Scholar 

  • Goedert M., Spillantini M. G., Crowther R. A., Chen S. G., Parchi P., Tabaton M., et al. (1999) Tau gene mutation in familial progressive subcortical gliosis. Nat. Med. 5, 454.

    Article  PubMed  CAS  Google Scholar 

  • Goode B. L. and Feinstein S. C. (1994) Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J. Cell Biol. 124, 769.

    Article  PubMed  CAS  Google Scholar 

  • Goode B. L., Denis P. E., Panda D., Radeke M. J., Miller H. P., Wilson L., et al. (1997) Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell 8, 353.

    PubMed  CAS  Google Scholar 

  • Hanger D. P., Hughes K., Woodgett J. R., Brion J. P., and Anderton B. H. (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M., Smith M. J., Iijima M., Tabira T., and Goedert M. (1999) FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 443, 93.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S., Toyoshima Y., Hasegawa M., Umeda Y., Wakabayashi K., Tokiguchi S., et al. (2002) Late-onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation. Ann. Neurol. 51, 525.

    Article  PubMed  CAS  Google Scholar 

  • Hosoi T., Uchiyama M., Okumura E., Saito T., Ishiguro K., Uchida T., et al. (1995) Evidence for cdk5 as a major activity phosphorylating tau protein in porcine brain extract. J. Biochem. (Tokyo) 117, 741.

    CAS  Google Scholar 

  • Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., et al. (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K. (1997) Tau protein kinases, in Brain Microtubule Associated Proteins (Avila J., Brandt R., and Kosik K. S., eds.), Harwood Academic, Amsterdam, p. 73.

    Google Scholar 

  • Ishiguro K., Omori A., Takamatsu M., Sato K., Arioka M., Uchida T., et al. (1992) Phosphorylation sites on tau by tau protein kinase I, a bovine derived kinase generating an epitope of paired helical filaments. Neurosci. Lett. 148, 202.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K., Kobayashi S., Omori A., Takamatsu M., Yonekura S., Anzai K., et al. (1994) Identification of the 23 kDa subunit of tau protein kinase II as a putative activator of cdk5 in bovine brain. FEBS Lett. 342, 203.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K., Sato K., Takamatsu M., Park J., Uchida T., and Imahori K. (1995) Analysis of phosphorylation of tau with antibodies specific for phosphorylation sites. Neurosci. Lett. 202, 81.

    Article  PubMed  CAS  Google Scholar 

  • Klein C., Kramer E. M., Cardine A. M., Schraven B., Brandt R., and Trotter J. (2002) Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J. Neurosci. 22, 698.

    PubMed  CAS  Google Scholar 

  • Kosik K. S. (1997) Tau: structure and function, in Brain Microtubule Associated Proteins (Avila J., Brandt R., and Kosik K. S., eds.), Harwood Academic, Amsterdam., p. 43.

    Google Scholar 

  • Kosik K., Orecchio L., Bakalis S., and Neve R. (1989) Developmentally regulated expression of specific tau sequences. Neuron 2, 1389.

    Article  PubMed  CAS  Google Scholar 

  • Kusakawa G., Saito T., Onuki R., Ishiguro K., Kishimoto T., and Hisanaga S. (2000) Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J. Biol. Chem. 275, 17,166.

    Article  CAS  Google Scholar 

  • LeClerc N., Kosik K. S., Cowan N., Pienkowski T. P., and Baas P. W. (1993) Process formation in Sf9 cells induced by the expression of a microtubule-associated protein 2C-like construct. Proc. Natl. Acad. Sci. USA 90, 6223.

    Article  PubMed  CAS  Google Scholar 

  • Ledesma M. D., Correas I., Avila J., and Diaz-Nido J. (1992) Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer’s disease. FEBS Lett. 308, 218.

    Article  PubMed  CAS  Google Scholar 

  • Lee G., Neve R. L., and Kosik K. S. (1989) The microtubule binding domain of tau protein. Neuron 2, 1615.

    Article  PubMed  CAS  Google Scholar 

  • Lee M. S., Kwon Y. T., Li M., Peng J., Friedlander R. M., and Tsai L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360.

    Article  PubMed  CAS  Google Scholar 

  • Lew J., Huang Q. Q., Qi Z., Winkfein R. J., Aebersold R., Hunt T., et al. (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371, 423.

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S., Reynolds C. H., Latimer D., Davis D. R., Anderton B. H., Gallo J. M., et al. (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr. Biol. 4, 1077.

    Article  PubMed  CAS  Google Scholar 

  • Lu M. and Kosik K. S. (2000) Competition for microtubule-binding with dual expression of tau missense and splice isoforms. Mol. Biol. Cell 17, 171–184.

    Google Scholar 

  • Mandelkow E. M., Drewes G., Biernat J., Gustke N., Lint J. V., Vandenheede J. R., et al. (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 314, 315.

    Article  PubMed  CAS  Google Scholar 

  • Michel G., Mercken M., Murayama M., Noguchi K., Ishiguro K., Imahori K., et al. (1998) Characterization of tau phosphorylation in glycogen synthase kinase-3beta and cyclin dependent kinase-5 activator (p23) transfected cells. Biochim. Biophys. Acta 1380, 177.

    PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M., Hasegawa M., Takoo K., Suzuki M., Yoshida H., Titani K., et al. (1995) Prolinedirected and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem. 270, 823.

    Article  PubMed  CAS  Google Scholar 

  • Nath R., Davis M., Probert A. W., Kupina N. C., Ren X., Schielke G. P., and Wang K. K. (2000) Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem. Biophys. Res. Commun. 274, 16.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen M. D., Lariviere R. C., and Julien J. P. (2001) Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135.

    Article  PubMed  CAS  Google Scholar 

  • Nikolic M., Dudek H., Kwon Y. T., Ramos Y. F., and Tsai L. H. (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816.

    Article  PubMed  CAS  Google Scholar 

  • Poorkaj P., Bird T. D., Wijsman E., Nemens E., Garruto R. M., Anderson L., et al. (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia [published erratum appears in Ann. Neurol. 1998 44(3):428]. Ann. Neurol. 43, 815.

    Article  PubMed  CAS  Google Scholar 

  • Rizzu P., Van Swieten J. C., Joosse M., Hasegawa M., Stevens M., Tibben A., et al. (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am. J. Hum. Genet. 64, 414.

    Article  PubMed  CAS  Google Scholar 

  • Singh T. J., Zaidi T., Grundke-Iqbal I., and Iqbal K. (1995) Modulation of GSK-3-catalyzed phosphorylation of microtubule-associated protein tau by non-proline-dependent protein kinases. FEBS Lett. 385, 4.

    Article  Google Scholar 

  • Song J. S. and Yang S. D. (1995) Tau protein kinase I/GSK-3 beta/kinase FA in heparin phosphorylates tau on Ser199, Thr231, Ser235, Ser262, Ser369, and Ser400 sites phosphorylated in Alzheimer disease brain. J. Protein Chem. 14, 95.

    Article  PubMed  CAS  Google Scholar 

  • Sperber B. R., Leight S., Goedert M., and Lee V. M. (1995) Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neurosci. Lett. 197, 149.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G. and Goedert M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428.

    Article  PubMed  CAS  Google Scholar 

  • Spillatini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., and Ghetti B. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA 95, 7737.

    Article  Google Scholar 

  • Stamer K., Vogel R., Thies E., Mandelkow E., and Mandelkow E. M. (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051.

    Article  PubMed  CAS  Google Scholar 

  • Takashima A., Noguchi K., Sato K., Hoshino T., and Imahori K. (1993) Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 90, 7789.

    Article  PubMed  CAS  Google Scholar 

  • Tarricone C., Dhavan R., Peng J., Areces L. B., Tsai L. H., and Musacchio A. (2001) Structure and regulation of the CDK5-p25(nck5a) complex. Mol. Cell 8, 657.

    Article  PubMed  CAS  Google Scholar 

  • Tsai L. H., Delalle I., Caviness V. S. Jr., Chae T., and Harlow E. (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419.

    Article  PubMed  CAS  Google Scholar 

  • Vogelsberg-Ragaglia V., Bruce J., Richter-Landsberg C., Zhang B., Hong M., Trojanowski J. Q., et al. (2000) Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol. Biol. Cell 11, 4093.

    PubMed  CAS  Google Scholar 

  • Wang Y. X., Catlett N. L., and Weisman L. S. (1998) Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J. Cell Biol. 140, 1063.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C. W. Wszolek M. F., Shulman J. M., Salvaterra P. M., Lewis J., Hutton M., et al. (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 14, 14.

    Google Scholar 

  • Yasuda M., Kawamata T., Komure O., Kuno S., D’Souza I., Poorkaj P., et al. (1999) A mutation in the microtubule-associated protein tau in pallido-nigro-luysian degeneration. Neurology 53, 864.

    PubMed  CAS  Google Scholar 

  • Zhukareva V., Vogelsberg-Ragaglia V., Van Deerlin V. M., Bruce J., Shuck T., Grossman M., et al. (2001) Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann. Neurol. 49, 165.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Kosik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosik, K.S., Ahn, J., Stein, R. et al. Discovery of compounds that will prevent tau pathology. J Mol Neurosci 19, 261–266 (2002). https://doi.org/10.1385/JMN:19:3:261

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:19:3:261

Index Entries

Navigation