Skip to main content

Neurotrophic and neuroprotective effects of milk thistle (Silybum marianum) on neurons in culture

Abstract

Herbal products are being increasingly used as dietary supplements and therapeutic agents. However, much more research must be performed in order to determine the biological basis for their putative clinical effects. We tested the effects of milk thistle (Silybum marianum) extract on the differentiation and survival of cultured neural cells. Milk thistle enhanced nerve growth factor (NGF)-induced neurite outgrowth in PC-12 neural cells and prolonged their survival in culture. Milk thistle extract also protected cultured rat hippocampal neurons against oxidative stress-induced cell death. Our data demonstrate that milk thistle extract can promote neuronal differentiation and survival, suggesting potential benefits of chemicals in this plant on the nervous system.

This is a preview of subscription content, access via your institution.

References

  • Austin J.A. (1998) Why patients use alternative medicine: results of a national study. JAMA 279, 1548–1553.

    Article  Google Scholar 

  • Berkson B.M. (1999) A conservative triple antioxidant approach to the treatment of hepatitis C. Combination of alpha lipoic acid (thioctic acid), silymarin, and selenium: three case histories. Med. Klin. 94, S84-S89.

    Article  Google Scholar 

  • Brevoort P. (1996) The U.S. botanical market: an overview. Herbalgram 36, 49–57.

    Google Scholar 

  • Dehmlow C., Murawski N., and de Groot H. (1996) Scavengering of reactive oxygen species and inhibition arachidonic acid metabolism by silibinin in human cells. Life Sci. 58, 1591–1600.

    PubMed  Article  CAS  Google Scholar 

  • Deshmukh, M. and Johnson E.M. Jr. (1997) Programmed cell death in neurons: focus on the pathway of nerve growth factor deprivation-induced death of sympathetic neurons. Mol. Pharmacol. 51, 897–906.

    PubMed  CAS  Google Scholar 

  • Eisenberg D.M., Kessler R.C., Foster C., Norlock F.E., Calkins D.R., and Delbanco T.L. (1993) Unconventional medicine in the United States: prevalence, costs, and patterns of use. N. Engl. J. Med. 328, 246–252.

    PubMed  Article  CAS  Google Scholar 

  • Ferenci P. and Dragosics B. (1989) Randomized controlled trial of silymarin treatment in patients with cirrhosis of liver. J. Hepatol. 9, 105–113.

    PubMed  Article  CAS  Google Scholar 

  • Flora K., Hahn M., Rosen H., and Benner K. (1998) Milk Thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroenterol. 93, 139–143.

    PubMed  Article  CAS  Google Scholar 

  • Katiyar S.K., Korman N.J., Mukhtar H., and Agarwal R. (1997) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J. Natl. Cancer Inst. 89, 556–566.

    PubMed  Article  CAS  Google Scholar 

  • Kruman I., Bruce-Keller J.N., Fernandez S., and Mattson M.P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.

    PubMed  CAS  Google Scholar 

  • Luper, S. (1999) A review of plants used in the treatment of liver disease: part two. Altern. Med Rev. 4(3), 178–88.

    PubMed  CAS  Google Scholar 

  • Manna, S.K., Mukhopadhyay, A., Van, N.T., and Aggarwal, B.B. (1999) Silymarin suppress TNF-induced activation of NF-κB, c-Jun N-terminal kinase, and apoptosis. J. Immunol. 163, 6800–6809.

    PubMed  CAS  Google Scholar 

  • Mathur A. and Vallano M.L. (2000) 2,2′,3,3′,4,4′-Hexahydroxy-1,1′-biphenyl-6,6′-dimethanol Dimethyl Ether (HBDDE)-induced neuronal apoptosis independent of classical protein kinase C α or λ inhibition. Biochem. Pharmacol. 60, 809–815.

    PubMed  Article  CAS  Google Scholar 

  • Mattson, M.P., Cheng, B., Culwell, A.R., Esch, F.S., Lieberburg, I., and Rydel, R.E. (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10, 243–254.

    PubMed  Article  CAS  Google Scholar 

  • Mattson M.P. (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57.

    PubMed  Article  CAS  Google Scholar 

  • Mosmann, T. (1997) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.

    Article  Google Scholar 

  • Muzes, G., Deak, G., Lang, I., Nekam, K., Gergely, P., and Fiher, J. (1991) Effect of the bioflavonoid silymarin on the in vitro activity and expression of superoxide dismutase (SOD) enzyme. Acta Physiol. Hung. 78, 3–9.

    PubMed  CAS  Google Scholar 

  • Park, D.S., Stefanis, L., Yan, C.Y., Farinelli, S.E., and Greene, L.A. (1996) Ordering the cell death pathway. Differential effects of BCL2, an interleukin-1-converting enzyme family protease inhibitor, and other survival agents on JNK activation in serum/nerve growth factor-deprived PC12 cells. J. Biol. Chem. 271, 21898–21905.

    PubMed  Article  CAS  Google Scholar 

  • Scambia G., De Vincenzo R., Ranelletti F.O., Benedetti-Panici P., Ferrandina G., et al. (1996) Antiproliferative effect of silybin on gynaecological malignancies: synergism with cisplatin and doxorubicin. Eur. J. Cancer 32A, 877–882.

    PubMed  Article  CAS  Google Scholar 

  • Schonfeld J.V., Weisbrod B., and Muller M.K. (1997) Silibinin, a plant extract with antioxidant and membrane stabilizing properties, protects exocrine pancrease from cyclosporin A toxicity. Cell Mol Life Sci. 563, 917–920.

    Article  Google Scholar 

  • Soliman K.F. and Mazzio E.A. (1998) In vitro attenuation of nitric oxide production in C6 astrocyte cell culture by various dietary compounds. Proc. Soc. Exp. Biol. Med. 218, 390–397.

    PubMed  CAS  Google Scholar 

  • Tager M., Dietzmann J., Thiel U., Hinrich Neumann K., and Ansorge S. (2001) Restoration of the cellular thiol status of peritoneal macrophages from CAPD patients by the flavonoids silibinin and silymarin. Free Radic. Res. 34, 137–151.

    PubMed  Article  CAS  Google Scholar 

  • Valenzuela A., Guerra R., and Videla L.A. (1986) Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med. 6, 438–440

    PubMed  Article  Google Scholar 

  • Venkataramanan R., Ramachandran V., Komoroski B.J., Zhang S., Schiff P.L., and Strom S.C. (2000) Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures. Drug Metab. Dispos. 28, 1270–1273.

    PubMed  CAS  Google Scholar 

  • Zhao J., Sharma Y., and Agarwal R. (1999) Significant inhibition by the Flavinoid antioxidant Silymarin against 12-O-tetradecanoylphorbol 13-Acetate caused modulation of antioxidant and inflammatory enzymes and Cyclooxygenase 2 and Interleukin-1α expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion. Mol. Carcinogen. 26, 321–333.

    Article  CAS  Google Scholar 

  • Zi X., and Agarwal R. (1999) Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc. Natl. Acad. Sci. USA 96, 7490–7495.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Kittur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kittur, S., Wilasrusmee, S., Pedersen, W.A. et al. Neurotrophic and neuroprotective effects of milk thistle (Silybum marianum) on neurons in culture. J Mol Neurosci 18, 265–269 (2002). https://doi.org/10.1385/JMN:18:3:265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:3:265

Index Entries

  • Apoptosis
  • herbal medicine
  • hippocampus
  • neurite outgrowth
  • oxidative stress