Skip to main content
Log in

Upregulation of neuronal nicotinic receptor subunits α4, β2, and α7 in transgenic mice overexpressing human acetylcholinesterase

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neuronal nicotinic receptor binding sites as well as mRNA levels encoding for subunits α4, β2, and α7 were analysed in 3-mo-old transgenic mice generated with a neuronal overexpression of human acetylcholinesterase and in age-matched controls. The acetylcholinesterase transgenic mice display progressive cognitive impairment in spatial learning and memory. We here report a significantly increased [3H]epibatidine and [125I]αbungarotoxin binding in the cortex and the caudate putamen of these mice. Quantitative in situ hybridization showed significant upregulation of mRNA corresponding to the nicotinic receptor subunits α4, β2, and α7 in various brain regions in the transgenic mice compared to nontransgenic controls. Our results suggest that disruption of balanced cholinergic transmission by constitutive overexpression of acetylcholinesterase is accompanied by variable upregulation of several nicotinic receptor subtypes, in particular these associated with cholinergic terminals participating in compensatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres C., Beeri R., Friedman A., Lev-Lehman E., Henis S., Timberg R., Shani M., and Soreq H. (1997) Acetylcholinesterase-transgenic mice display embryonic modulations in spinal cord choline acetyltransferase and neurexin Ibeta gene expression followed by late-onset neuromotor deterioration. Proc. Natl. Acad. Sci. USA 94, 8173–8178.

    Article  PubMed  CAS  Google Scholar 

  • Beeri R., Andres C., Lev-Lehman E., Timberg R., Huberman T., Shani M., and Soreq H. (1995) Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr. Biol. 5, 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  • Beeri R., Le Novere N., Mervis R., Huberman T., Grauer E., Changeux J. P., and Soreq H. (1997) Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J. Neurochem. 69, 2441–2451.

    Article  PubMed  CAS  Google Scholar 

  • Benwell M. E., Balfour D. J., and Anderson J. M. (1988) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J. Neurochem. 50, 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  • Erb C., Troost J., Kopf S., Schmitt U., Loffelholz K., Soreq H., and Klein J. (2001) Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J. Neurochem. 77, 638–646.

    Article  PubMed  CAS  Google Scholar 

  • Gomez J. L., Garcia-Ayllon M. S., Campoy F. J., and Vidal C. J. (2000) Muscular dystrophy alters the processing of light acetylcholinesterase but not butyrylcholinesterase forms in liver of lama2(dy) mice. J. Neurosci. Res. 62, 134–145.

    Article  PubMed  CAS  Google Scholar 

  • Kaufer D., Friedman A., Seidman S., and Soreq H. (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Koelle G. B. (1951) The elimination of enzymatic diffusion artefacts in the histochemical localisation of cholinesterase and a survey of their cellular distribution. J. Pharmacol. Exp. Ther. 103, 153–171.

    PubMed  CAS  Google Scholar 

  • Li B., Stribley J. A., Ticu A., Xie W., Schopfer L. M., Hammond P., et al. (2000) Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J. Neurochem. 75, 1320–1331.

    Article  PubMed  CAS  Google Scholar 

  • Marks M. J., Pauly J. R., Gross S. D., Deneris E. S., Hermans-Borgmeyer I., Heinemann S. F., and Collins A. C. (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784.

    PubMed  CAS  Google Scholar 

  • Nordberg A. (1999) PET studies and cholinergic therapy in Alzheimer’s disease. Rev. Neurol. (Paris) 155, S53-S63.

    Google Scholar 

  • Nordberg A., Hellström-Lindahl E., Almkvist O., and Meurling L. (1999) Activity of acetylcholinesterase in CSF increases in Alzheimer’s patients after treatment with tacrine. Alzheimer’s Reports 2, 347–352.

    Google Scholar 

  • Nordberg A., Romanelli L., Sundwall A., Bianchi C., and Beani L. (1989) Effect of acute and subchronic nicotine treatment on cortical acetylcholine release and on nicotinic receptors in rats and guinea-pigs. Br. J. Pharmacol. 98, 71–78.

    PubMed  CAS  Google Scholar 

  • Peng X., Gerzanich V., Anand R., Whiting P. J., and Lindstrom J. (1994) Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol. Pharmacol. 46, 523–530.

    PubMed  CAS  Google Scholar 

  • Perry E., Martin-Ruiz C., Lee M., Griffiths M., Johnson M., Piggott M., et al. (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur. J. Pharmacol. 393, 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Shapira M., Grant A., Korner M., and Soreq H. (2000a) Genomic and transcriptional characterization of the human ACHE locus: complex involvement with acquired and inherited diseases. Isr. Med. Assoc. J. 2, 470–473.

    PubMed  CAS  Google Scholar 

  • Shapira M., Tur-Kaspa I., Bosgraaf L., Livni N., Grant A. D., Grisaru D., et al. (2000b) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet. 9, 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  • Sternfeld M., Shoham S., Klein O., Flores-Flores C., Evron T., Idelson G. H., et al. (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc. Natl. Acad. Sci. USA 97, 8647–8652.

    Article  PubMed  CAS  Google Scholar 

  • Svensson A-L. and Nordberg A. (1996) Tacrine interacts with an allosteric activator site on alpha 4 beta 2 nAChRs in M10 cells. Neuroreport 7, 2201–2205.

    Article  PubMed  CAS  Google Scholar 

  • von der Kammer H., Mayhaus M., Albrecht C., Enderich J., Wegner M., and Nitsch R. M. (1998) Muscarinic acetylcholine receptors activate expression of the EGR gene family of transcription factors. J. Biol. Chem. 273, 14538–14544.

    Article  PubMed  Google Scholar 

  • Wilcox J. N. (1993) Fundamental principles of in situ hybridization. J. Histochem. Cytochem. 41, 1725–1733.

    PubMed  CAS  Google Scholar 

  • Zhang X., Gong Z. H., and Nordberg A. (1994) Effects of chronic treatment with (+)- and (−)-nicotine on nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors in rat brain. Brain Res. 644, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X., Liu C., Miao H., Gong Z. H., and Nordberg A. (1998) Postnatal changes of nicotinic acetylcholine receptor alpha 2, alpha 3, alpha 4, alpha 7 and beta 2 subunits genes expression in rat brain. Int. J. Dev. Neurosci. 16, 507–518.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie M. Svedberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svedberg, M.M., Svensson, AL., Johnson, M. et al. Upregulation of neuronal nicotinic receptor subunits α4, β2, and α7 in transgenic mice overexpressing human acetylcholinesterase. J Mol Neurosci 18, 211–222 (2002). https://doi.org/10.1385/JMN:18:3:211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:3:211

Index Entries

Navigation