Skip to main content
Log in

Increase of acidic fibroblast growth factor in the brains of hamsters infected with either 263K or 139H strains of scrapie

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Scrapie is the archetypal unconventional slow infection disease. It has been shown that hamsters injected intracerebrally with scrapie strains 139H or 263K show extensive astrocytosis and that the induced reactive astrocytes produce a variety of factors that can affect brain function. Acidic fibroblast growth factor (aFGF) belongs to a family of growth factors that show a high affinity for heparin sulfate proteoglycans. In the current study, we have used immunohistochemistry to investigate the distribution of aFGF in scrapie-infected brain; we observed a low level of aFGF immunoreactivity (ir-aFGF) in ependymal cells and in a few neurons in the hypothalamus of control hamsters. In contrast, in scrapie-infected hamsters, there was an increase of ir-aFGF in a number of cell types, including neurons, pericytes, astrocytes, and ependymal cells. In 139H-infected hamsters, ir-aFGF staining in astrocytes, neurons and neuropil areas of the cortex, hippocampus, thalamus, and hypothalamus was greater than the staining in control animals. For 263K animals, astrocytic ir-aFGF staining was significantly greater than in either control or 139H-infected hamsters in the following regions: cortex, putamen, corpus callosum, thalamus, hypothalamus, fimbria, hippocampus, subependymal areas, and amygdala. In addition, there was a significant increase in neuronal ir-aFGF in the CA1 hippocampal area and in the amygdala. Our results suggest that neurons and astrocytes can produce and/or absorb aFGF during scrapie infection. These findings indicate that aFGF might play an important role in neuronal protection and in astrocytosis in scrapie-infected hamsters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrow P. A., Holmgren C. D., Tapper A. J., and Jefferys G. R. (1999) Intrinsic physiological and morphological properties of principal cells of the hippocampus and neocortex in hamsters infected with scrapie. Neurobiol. Dis. 6, 406–423.

    Article  PubMed  CAS  Google Scholar 

  • Campbell I. L., Eddleston M., Kemper P., Oldstone M. B. A., and Hobbs M. V. (1994) Activation of cerebral cytokine gene expression and its correlation with onset of reactive astrocyte and acute-phase response gene expression in scrapie. J. Virol. 68(4), 2383–2387.

    PubMed  CAS  Google Scholar 

  • Carp R. I., Kim Y. S., and Callahan S. M. (1990) Pancreatic lesions and hypoglycemia-hyperinsulinemia in scrapie-injected hamsters. J. Infect. Dis. 161, 462–466.

    PubMed  CAS  Google Scholar 

  • Carp R. I., Ye X., Kascsak R. J., and Rubenstein R. (1994) The nature of the scrapie agent: biological characteristics of scrapie in different scrapie strain-host combinations, in Slow Infections of the Central Nervous System, vol. 724 (Bjornsson J., Carp R. I., Löve A., and Wisniewski H. W., eds.), Annals of New York Academy of Sciences, New York, pp. 221–234.

    Google Scholar 

  • Caruelle D., Groux-Muscatelli B., Gaudric A., Sestier C., Coscas G., Caruelle J. P., and Barritault D. (1989) Immunological study of acidic fibroblast growth factor (aFGF) distribution in the eye. J. Cell Biochem. 39(2), 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Choi S. I., Ju W. K., Choi E. K., Kim J., Lea H. Z. Carp R. I., Wisniewski H. M., and Kim Y. S. (1998) Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263K scrapie agent. Acta Neuropathol. 96, 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson A. G. (1976) Scrapie in sheep and goats, in Slow Virus Diseases in Animals and Man (Kimberlin R. H., ed.), North-Holland, Amsterdam, pp. 210–243.

    Google Scholar 

  • Diedrich J. F., Bendheim P. E., Kim Y. S., Carp R. I., and Haase A. T. (1991) Scrapie associated prion protein accumulates in astrocytes during scrapie infection. Proc. Natl. Acad. Sci. USA 88, 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Forloni G., Angeretti N., Chiesa R., Monzani E., Salmona M., Bugiani O., and Tagliavini F. (1993) Neurotoxicity of a prion protein fragment. Nature 362, 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Forloni G., Bo R. D., Angeretti N., Chiesa R., Smiroldo S., Doni R., Ghibaudi E., et al. (1994) A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy. Eur. J. Neurosci. 6, 1415–1422.

    Article  PubMed  CAS  Google Scholar 

  • Fraser J. R., Brown J., Bruce M. E., and Jeffrey M. (1997) Scrapie-induced neuron loss is reduced by treatment with basic fibroblast growth factor. Neuroreport 8(9–10), 2405–2409.

    Article  PubMed  CAS  Google Scholar 

  • Hafiz F. B. and Brown D. R. (2000) A model for the mechanism of astrogliosis in prion disease. MCN 16, 221–232.

    PubMed  CAS  Google Scholar 

  • Hanai K., Oomura Y., Kai Y., Nishikawa K., Shimizu N., Morita H., and Plata-Salamán C. R. (1989) Central action of acidic fibroblast growth factor in feeding regulation. Am. J. Physiol. 256, R217-R223.

    PubMed  CAS  Google Scholar 

  • Iwasahi Y., Shiojima T., Ikeda K., Tagaya N., Kobayashi T., and Kinoshita M. (1995) Acidic and basic fibroblast growth factors enhance neurite outgrowth in cultured rat spinal cord neurons. Neurol. Res. 17, 70–72.

    Article  Google Scholar 

  • Jeffrey M., Halliday W. G., Bell J., Johnston A. R., MacLeod N. K., Ingham Sayers A. R., et al. (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol. Appl. Neurobiol. 26(1), 41–54.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria R. N. (1993) The immunopathology of Alzheimer’s disease and some related disorders. Brain Path. 3, 333–347.

    CAS  Google Scholar 

  • Kascsak R. J., Rubenstein R., and Carp R. I. (1991) Evidence for biological and structural diversity among scrapie strains. Curr. Topic Microbiol. Immunol. 172, 139–152.

    CAS  Google Scholar 

  • Kimberlin R. H. and Walker C. A. (1977) Characteristic of a short incubation model of scrapie in the golden hamster. J. Gen. Virol. 34, 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin R. H. and Walker C. A. (1986) Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J. Gen. Virol. 67, 255–263.

    PubMed  Google Scholar 

  • Kimberlin R. H., Walker C. A., and Fraser H. (1989) The genomic identity of different strains of mouse scrapie is expressed in hamsters and preserved on reisolation in mice. J. Gen. Virol. 70, 2017–2025.

    PubMed  Google Scholar 

  • Kolpakoca E., Frengen E., Stokke T., and Olsnes S. (2000) Organization, chromosomal localization and promoter analysis of the gene encoding human acidic fibroblast growth factor intracellular binding protein. Biochem. J. 352, 629–635.

    Article  Google Scholar 

  • Li A.-J., Oomura Y., Sasaki K., Suzuki K., Tooyama I., Hanai K., et al. (1998) A single pre-training glucose injection induces memory facilitation in rodents performing various tasks: contribution of acidic fibroblast growth factor. Neuroscience 85(3), 785–794.

    Article  PubMed  CAS  Google Scholar 

  • McKeehan W. L., Wang F., and Kan M. (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog. Nucleic Acids Res. Mol. Biol. 59, 135–176.

    CAS  Google Scholar 

  • Mehta V. B., Connors L., Wang H. C., and Chui I. M. (1998) Fibroblast variants nonresponsive to fibroblast growth factor 1 are detective in its nuclear translocation. J. Biol. Chem. 273, 4197–4205.

    Article  PubMed  CAS  Google Scholar 

  • Oomura Y., Sasaki K., Suzuki K., Muto T., Li A.-J., Ogita Z.-I, et al. (1992) A new brain glucosensor and its physiological significance. Am. J. Clin. Nutr. 55, 278S-282S.

    PubMed  CAS  Google Scholar 

  • Pettmann B., Weibel M., Sensenbrenner M., and Labourdette G. (1985) Purification of two astroglial growth factors from bovine brain. FEBS Lett. 189, 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522.

    Article  PubMed  CAS  Google Scholar 

  • Raeber A. J., Race R. E., Brandner S., Priola S. A., Sailer A., Bessen R. A., et al. (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16(20), 6057–6065.

    Article  PubMed  CAS  Google Scholar 

  • Saborlo G. P., Permanne B., and Soto C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813.

    Article  Google Scholar 

  • Sasaki K., Oomura Y., Suzuki K., Hanai K., and Yagi H. (1992) Acidic fibroblast growth factor prevents death of hippocampal CA1 pyramidal cells following ischemia. Neurochem. Int. 21, 397–402.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K., Oomura Y., Figorov A., and Yagi H. (1994) Acidic fibroblast growth factor facilitates generation of long-term potentiation in rat hippocampal slices. Brain Res. Bull. 33, 505–511.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K., Tooyama I., Li A.-J., Oomura Y., and Kimura H. (1999) Effects of an acidic fibroblast growth factor fragment analog on learning and memory and on medial septum cholonergic neurons in senescence-accelerated mice. Neuroscience 92(4), 1287–1294.

    Article  PubMed  CAS  Google Scholar 

  • Scott J. R. and Fraser H. (1984) Degenerative hippocampal pathology in mice infected with scrapie. Acta Neuropathol. 65, 62–68.

    Article  PubMed  CAS  Google Scholar 

  • Smallwood P. M., Munoz-Sanjuan I., Tong P., Macke J. P., Hendry S. H., Gilbert D. J., et al. (1996) Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA 93, 9850–9857.

    Article  PubMed  CAS  Google Scholar 

  • Thomas K. A. (1993) Biochemistry and molecular biology of fibroblast growth factors, in Neurotrophic Factors (Fallon J. and Loughlin S., eds.), Academic Press, Orlando, FL., pp. 285–312.

    Google Scholar 

  • Tooyama I., Hara Y., Tasuhara O., Oomura Y., Sasaki K., Muto T., et al. (1991) Production of antisera to acidic fibroblast growth factor and their application to immunohistochemical studies in the rat brain. Neuroscience 40, 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Walter M. A., Kurouglu R., Caufield J. B., Vasconez L. O., and Thompson J.A. (1993) Enhanced peripheral nerve regeneration by acidic fibroblast growth factor. Lymphokine Cytokine Res. 12, 135–141.

    PubMed  CAS  Google Scholar 

  • Williams A., Van Dam A. M., Ritchie D., Eikelenboom P., and Fraser H. (1997) Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res. 754, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Williame A. E., Ryder S., and Blakemore W. F. (1995) Monocyte recruitment into the scrapie-affected brain. Acta Neuropathol. 90, 164–169.

    Article  Google Scholar 

  • Wu D. K., Maciag T., and DeVellis J. (1988) Regulation of neuroblast proliferation by hormones and growth factors in chemically defined medium. J. Cell Physiol. 136, 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Ye X., Carp R. I., Kozielski R., and Kozlowski P. (1992) Scrapie-induced increase in basic fibroblast growth factor in the hamster brain. Brain Pathol. 2, 262.

    Google Scholar 

  • Ye X., Carp R. I., Yu Y., Kozielski R., and Kozlowski P. (1994) Hyperplasia and hypertrophy of B-Cells in the islets of Langerhans in hamsters infected with the 139H strain of scrapie. J. Comp. Pathol. 110, 169–183.

    PubMed  CAS  Google Scholar 

  • Ye X. and Carp R. I. (1995) The pathological changes in the peripheral organs in scrapie-infected animals. Histol. Histopathol. 10(4), 995–1021.

    PubMed  CAS  Google Scholar 

  • Ye X., Scallet A. C., Kascsak R. J., and Carp R. I. (1998) Astrocytosis and amyloid deposition in scrapie-infected hamsters. Brain Res. 809, 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Ye X., Scallet A. C., Kascsak R. J., and Carp R. I. (1999) Astrocytosis and proliferating cell nuclear antigen expression in brains of scrapie-infected hamsters. J. Mol. Neurosci. 11, 253–263.

    Article  Google Scholar 

  • Yong V. W., Kim M. W., and Kim S. U. (1989) Human glial cells and growth factors, in Myelination and Demyelination: Implications for Multiple Sclerosis (Kim S. U., ed.), Plenum Press, New York, pp. 29–48.

    Google Scholar 

  • Yoshida K. and Gage F. H. (1991) Fibroblast growth factors stimulate nerve growth factor synthesis and secretion by astrocytes. Brain Res. 538, 118–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Carp, R.I. Increase of acidic fibroblast growth factor in the brains of hamsters infected with either 263K or 139H strains of scrapie. J Mol Neurosci 18, 179–188 (2002). https://doi.org/10.1385/JMN:18:3:179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:3:179

Index Entries

Navigation