Skip to main content
Log in

Immunological characterization of 5-HT3 receptor transmembrane topology

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The 5-hydroxytryptamine3 (5-HT3) receptor is a member of the Cys-loop family of ligand-gated ion channels. These receptors are pentamers with the greatest homology to nicotinic acetylcholine (nACh) receptors. The proposed topological organization of a 5-HT3 receptor subunit is based largely on hydropathy profiles and by homology to nACh receptors, and indicates a large N-terminal extracellular domain and four transmembrane regions. There is, however, little direct evidence for this model. We therefore investigated the topology of the 5-HT3A receptor subunit using a panel of 5-HT3 receptor-specific antisera that interact with defined regions of the receptor. An antiserum generated against a short peptide from the N-terminal domain of the 5-HT3A receptor subunit, pAb120, was shown to bind to 5-HT3 receptor-expressing cells with intact cell membranes, indicating that the N-terminal end of the subunit is extracellular. Two antisera generated against regions of the loop between predicted transmembrane regions three and four did not bind to cells with intact membranes. However on membrane permeabilization these antibodies both bound to the receptor in intracellular areas, thus indicating that the loop between transmembrane domains three and four is intracellular. These data therefore provide direct evidence for an extracellular N-terminal domain and an intracellular loop between the third and fourth transmembrane domains, thus supporting the conventional ligand-gated ion channel subunit topological model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand R., Bason L., Saedi M. S., Gerzanich V., Peng X., and Lindstrom J. (1993) Reporter epitopes: A novel approach to examine transmembrane topology of integral membrane proteins applied to the α1 subunit of the nicotinic acetylcholine receptor. Biochemistry 32, 9975–9984.

    Article  PubMed  CAS  Google Scholar 

  • Boess F. G., Steward L. J., Steele J. A., et al. (1997) Analysis of the ligand binding site of the 5-HT3 receptor using site directed mutagenesis: importance of glutamate 106. Neuropharmacology 36, 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Brejc K., van Dijk W. J., Klaassen R. V., et al. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Chavez R. A. and Hall Z. W. (1991) The transmembrane topology of the amino terminus of the α subunit of the nicotinic acetylcholine receptor. J. Biol. Chem. 266, 15532–15538.

    PubMed  CAS  Google Scholar 

  • Chavez R. A. and Hall Z. W. (1992) Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the alpha and delta subunits. J. Cell Biol. 116, 385–393.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Fine B. M., Lei S., and McLane K. E. (1996) Antibodies as tools to study the structure of membrane proteins: the case of the nicotinic acetylcholine receptor. Annu. Rev. Biophys. Biomol. Struct. 25, 197–229.

    PubMed  CAS  Google Scholar 

  • Corringer P. J., Le Novere N., and Changeux J.-P. (2000) Nicotinic receptors at the amino acid level. Ann. Rev. Pharmacol. Toxicol. 40, 431–458.

    Article  CAS  Google Scholar 

  • Criado M., Hochschwender S., Sarin V., Fox J. L., and Lindstrom J. (1985) Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc. Natl. Acad. Sci. USA 82, 2004–2008.

    Article  PubMed  CAS  Google Scholar 

  • Davies P. A., Pistis M., Hanna M. C., et al. (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397, 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Derkach V., Surprenant A., and North R. A. (1989) 5-HT3 receptors are membrane ion channels. Nature 339, 706–709.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer B. P. (1991) Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica. Biochemistry 30, 4105–4112.

    Article  PubMed  CAS  Google Scholar 

  • Finer-Moore J. and Stroud R. M. (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Gorne-Tschelnokow U., Strecker A., Kaduk C., Naumann D., and Hucho F. (1994) The transmembrane domains of the nicotinic acetylcholine receptor contain α-helical and β structures. EMBO J. 13, 338–341.

    PubMed  CAS  Google Scholar 

  • Hargreaves A. C., Lummis C. C. R., and Taylor C. W. (1994) Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors. Mol. Pharmacol. 46, 1120–1128.

    PubMed  CAS  Google Scholar 

  • Hope A. G., Downie D. L., Sutherland L., Lambert J. L., Peter J. A., and Burchell B. (1993) Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor Asubunit. Eur. J. Pharmacol. 254, 187–192.

    Google Scholar 

  • Karlin A. and Akabas M. H. (1995) Toward a structural basis for the function of nicotinic receptors and their cousins. Neuron 15, 1231–1244.

    Article  PubMed  CAS  Google Scholar 

  • Leite J. F., Amoscato A. A., and Cascio M. (2000) Coupled proteolytic and mass spectrometry studies indicate a novel topology for the glycine receptor. J. Biol. Chem. 275(18), 13683–13689.

    Article  PubMed  CAS  Google Scholar 

  • Lummis S. C. R. and Fletcher, E. J. (1996). Functional and binding studies of glycosylation site mutants of 5-HT3 receptors. Br. J. Pharmacol. 119, 291P.

    Google Scholar 

  • Maricq A. V., Peterson A. S., Brake A. J., Myers R. M., and Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin gated ion channel. Science 254, 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Morales M., Battenberg E., Lecea L. D., and Bloom F. E. (1996) The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus. Brain Res. 731, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Moore C. R., Yates J. R. 3rd., Griffin P. R., et al. (1989) Proteolytic fragments of the nicotinic acetylcholine receptor identified by mass spectrometry: implications for receptor topography. Biochemistry 28, 9184–9191.

    Article  PubMed  CAS  Google Scholar 

  • Moss S. J., Smart T. G., Blackstone C. D., and Huganir R. L. (1992) Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Mukerji J., Haghighi A., and Seguela P. (1996) Immunological characterization and transmembrane topology of 5-hydroxytryptamine3 receptors by functional epitope tagging. J. Neurochem. 66, 1027–1032.

    Article  PubMed  CAS  Google Scholar 

  • Noda M., Takahashi H., Tanabe T., et al. (1983) Structural homology of Torpedo californica acetylcholine subunits. Nature 302, 528–553.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen S. E. and Cohen J. B. (1990) d-Tubocurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 87, 2785–2789.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam M. and Lindstrom J. (1984) Structural features of the nicotinic acetylcholine receptor revealed by antibodies to synthetic peptides. Biochem. Biophys. Res. Commun. 122, 1225–1233.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam M., Sargent P. B., Sarin V., et al. (1986a) Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry 25, 2621–2632.

    Article  PubMed  CAS  Google Scholar 

  • Ratnam M., Nguyen D. L., Rivier J., Sargent P. B., and Lindstrom J. (1986b) Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity plots. Biochemistry 25, 2633–2643.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Gomez A., Vaello M.-L., Valdivieso F., and Mayor F. Jr. (1991) Phosphorylation of the 48 kDa subunit of the glycine receptor by protein kinase C. J. Biol. Chem. 266, 559–566.

    PubMed  CAS  Google Scholar 

  • Spier A. D., Wotherspoon G., Nayak S. V., Nichols R. A., Priestley J. V., and Lummis S. C. R. (1999) Antibodies against the extracellular domain of the 5-HT3 receptor label both native and recombinant receptors. Mol. Brain Res. 67, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Spier A. D. and Lummis S. C. R. (2000) The role of tryptophan residues in the 5-Hydroxytryptamine(3) receptor ligand-binding domain. J. Biol. Chem. 275, 5620–5625.

    Article  PubMed  CAS  Google Scholar 

  • Steward L. J., Boess F. G., Steele J. A., Liu D., Wong N., and Martin I. L. (2000) Importance of phenylalanine 107 in agonist recognition by the 5-hydroxytryptamine(3A) receptor. Mol. Pharmacol. 57, 1249–1255.

    PubMed  CAS  Google Scholar 

  • Tobimatsu T., Fujita Y., Fukuda K., et al. (1987) Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function. FEBS Lett. 222, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Turton S., Gillard N. P., Stephenson F. A., and McKernon R. M. (1993) Antibodies against the 5-HT3-A receptor identify a 54 kDa protein affinity-purified from NCB20 cells. Mol. Neuropharmacol. 3, 167–171.

    CAS  Google Scholar 

  • Unwin N. (1993) Nicotinic acetylcholine receptor at 9Å resolution. J. Mol. Biol. 229, 1101–1124.

    Article  PubMed  CAS  Google Scholar 

  • Unwin N. (2000) The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Phil. Trans. R. Soc. Lond. B 355, 1813–1829.

    Article  CAS  Google Scholar 

  • Yan D., Schulte M. K., Bloom K. E., and White M. M. (1999) Structural features of the ligand-binding domain of the serotonin 5HT3 receptor. J. Biol. Chem. 274, 5537–5541.

    Article  PubMed  CAS  Google Scholar 

  • Yee G. H. and Huganir R. L. (1987) Determination of the sites of cAMP-dependent phosphorylation on the nicotinic acetylcholine receptor. J. Biol. Chem. 262, 16748–16753.

    PubMed  CAS  Google Scholar 

  • Young E. F., Ralston E., Blake J., Ramachandran J., Hall Z. W., and Stroud R. M. (1985) Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proc. Natl. Acad. Sci. USA 82, 626–630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avron D. Spier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spier, A.D., Lummis, S.C.R. Immunological characterization of 5-HT3 receptor transmembrane topology. J Mol Neurosci 18, 169–178 (2002). https://doi.org/10.1385/JMN:18:3:169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:3:169

Index Entries

Navigation