Advertisement

Journal of Molecular Neuroscience

, Volume 18, Issue 1–2, pp 143–149 | Cite as

Venlafaxine and mirtazapine

Different mechanisms of antidepressant action, common opioid-mediated antinociceptive effects—A possible opioid involvement in severe depression?
  • Shaul Schreiber
  • Avi Bleich
  • Chaim G. Pick
Protein Processing And Trafficking, Pain, Depression, And Anxiety

Abstract

The efficacy of each antidepressant available has been found equal to that of amitriptyline in double-blind studies as far as mild to moderate depression is involved. However, it seems that some antidepressants are more effective than others in the treatment of severe types of depression (i.e., delusional depression and refractory depression). Following studies regarding the antinociceptive mechanisms of various antidepressants, we speculate that the involvement of the opioid system in the antidepressants’ mechanism of action may be necessary, in order to prove effective in the treatment of severe depression. Among the antidepressants of the newer generations, that involvement occurs only with venlafaxine (a presynaptic drug which blocks the synaptosomal uptake of noradrenaline and serotonin and, to a lesser degree, of dopamine) and with mirtazapine (a postsynaptic drug which enhances noradrenergic and 5-HT1A-mediated serotonergic neurotransmission via antagonism of central α2-auto- and hetero-adrenoreceptors). When mice were tested with a hotplate analgesia meter, both venlafaxine and mirtazapine induced a dose-dependent, naloxone-reversible antinociceptive effect following ip administration. Summing up the various interactions of venlafaxine and mirtazapine with opioid, noradrenergic and serotonergic agonists and antagonists, we found that the antinociceptive effect of venlafaxine is influenced by opioid receptor subtypes (μ-, κ1- κ3- and δ-opioid receptor subtypes) combined with the α2-adrenergic receptor, whereas the antinociceptive effect of mirtazapine mainly involves μ- and κ3-opioid mechanisms. This opioid profile of the two drugs may be one of the explanations to their efficacy in severe depression, unlike the SSRIs and other antidepressants which lack opioid activity.

Index Entries

Antidepressants antinociception delusional depression hotplate opioid receptor subtypes noradrenaline mirtazapine refractory depression serotonin venlafaxine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahee L., Attila L. M., and Carlson K. R. (1990) Augmentation of morphine-induced changes in brain monoamine metabolism after chronic naltrexone treatment. J. Pharmacol. Exp. Ther. 255, 803–808.Google Scholar
  2. Amiaz R., Stein O., Dannon P. N., Grunhaus L., and Schreiber S. (1999) Resolution of treatment-refractory depression with naltrexone augmentation of paroxetine—a case report. Psychopharmacology 143, 433–434.PubMedCrossRefGoogle Scholar
  3. Benjamin E. and Bout-Smith T. (1993) Naltrexone and fluoxetine in Prader-Willi syndrome. J. Am. Acad. Child Adolesc. Psychiatry 32, 870–873.PubMedCrossRefGoogle Scholar
  4. Besson A., Haddjeri N., Blier P., and de Montigny C. (2000) Effects of the co-administration of mirtazapine and paroxetine on serotonergic neurotransmission in the rat brain. Eur. Neuropsychopharmacology 10, 177–188.CrossRefGoogle Scholar
  5. Coryell W. (1996) The treatment of psychotic depression. J. Clin. Psychiatry 59 (Suppl. 1), 28–29.Google Scholar
  6. Coryell W. (1997) Do psychotic, minor and intermittent depressive disorders exist on a continuum? J. Affective Dis. 45, 75–83.CrossRefGoogle Scholar
  7. de Boer T. (2000) The pharmacologic profile of mirtazapine. J. Clin. Psychiatry 57 (Suppl. 4), 19–24.Google Scholar
  8. Dubovsky S. L. and Thomas M. (1992) Psychotic depression: advances in conceptualization and treatment. Hosp. Community Psychiatry 43, 1189–1198.PubMedGoogle Scholar
  9. Ellingrod V. L. and Perry P. J. (1994) Venlafaxine: a heterocyclic antidepressant. Am. J. Hosp. Pharm. 51, 3000–3046.Google Scholar
  10. Finlay Jones R. and Parker G. (1993) A consensus conference on psychotic depression. Aust. N. Z. J. Psychiatry 27, 581–589.PubMedGoogle Scholar
  11. Hylden J. L. K. and Wilcox G. L. (1980) Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol. 67, 313–316.PubMedCrossRefGoogle Scholar
  12. Lloyd G. K., Cronin S., Fletcher A., and Mitchell P. J. (1992) The profile of venlafaxine, a novel antidepressant agent, in behavioral antidepressant drug models. Clin. Neuropharm. 15 (Suppl. 1; part B), part B), 428B.Google Scholar
  13. Mendlewicz J. (1995) Pharmacologic profile and efficacy of venlafaxine. Int. Clin. Psychopharmacol. 10 (Suppl. 2), 5–13.PubMedCrossRefGoogle Scholar
  14. Montgomery S. A. and Lecrubier Y. (1999) Is severe depression a separate indication? ECNP Consensus Meeting September 20, 1996, Amsterdam. Eur. Neuropsychopharmacol. 9, 259–264.PubMedCrossRefGoogle Scholar
  15. Moyer J. A., Andree T. H., Haskins J. T., Husbands G. E. M., and Muth E. A. (1992) The preclinical pharmacological profile of venlafaxine: a novel antidepressant agent. Clin. Neuropharm. 15 (Suppl. 1; part B), 435B.Google Scholar
  16. Muth E. A., Haskins J. T., Moyer J. A., Husbands G. E. M., Nielsen S. T., and Sigg E. B. (1986) Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative. Biochem. Pharmacol. 35, 4493–4497.PubMedCrossRefGoogle Scholar
  17. O’Brien C. P., Volpicelli L. A., and Volpicelli J. R. (1996) Naltrexone in the treatment of alcoholism: a clinical review. Alcohol 13, 35–39.PubMedCrossRefGoogle Scholar
  18. O’Mara N. B. and Wesley L. C. (1994) Naltrexone in the treatment of alcohol dependence. Ann. Pharmacother. 28, 210–211.PubMedGoogle Scholar
  19. Paul D. and Pasternak G. W. (1988) Differential blockade by naloxonazine of two μ opiate actions: Analgesia and gastrointestinal transit. Eur. J. Pharmacol. 149, 403–404.PubMedCrossRefGoogle Scholar
  20. Pick C., Paul D., Eison M. S., and Pasternak G. W. (1992) Potentiation of opioid analgesia by the antidepressant nefazodone. Eur. J. Pharmacol. 211, 375–381.PubMedCrossRefGoogle Scholar
  21. Rapaport M. H., Wolkowitz O., Kelsoe J. R., Pato C., Konicki P. E., and Pickar D. (1993) Beneficial effects of nalmefene augmentation in neuroleptic-stabilized schizophrenic patients. Neuropsychopharmacology 9, 111–115.PubMedGoogle Scholar
  22. Richelson E. (1996) Synaptic effects of antidepressants. J. Clin. Psychopharmacol. 16 (Suppl. 2), 1S-9S.PubMedCrossRefGoogle Scholar
  23. Schreiber S., Backer M. M., Weizman R., and Pick C. G. (1996a) The antinociceptive effects of fluoxetine. The Pain Clinic 9, 349–356.Google Scholar
  24. Schreiber S., Backer M. M., Yanai J., and Pick C. G. (1996b) The antinociceptive effect of fluvoxamine. Eur. Neuropsychopharmacol. 6, 281–284.PubMedCrossRefGoogle Scholar
  25. Schreiber S. and Lerer B. (1997) Failure to thrive in elderly, depressed patients: a new concept or a different name for an old problem? Isr. J. Psychiatry Relat. Sci. 34, 108–114.PubMedGoogle Scholar
  26. Schreiber S., Getslev V., Weizman A., and Pick C. G. (1998) The antinociceptive effect of moclobemide in mice is mediated by noradrenergic pathways. Neuroscience Letters 253, 183–186.PubMedCrossRefGoogle Scholar
  27. Schreiber S., Backer M. M., and Pick C. G. (1999) The antinociceptive effect of venlafaxine in mice is mediated through opioid and adrenergic mechanisms. Neuroscience Letters 273, 85–88.PubMedCrossRefGoogle Scholar
  28. Schreiber S., Rigai T., Backer M. M., and Pick C. G. (Submitted) The antinociceptive effect of mirtazapine in mice is mediated through opioid and adrenergic mechanisms. Brain Research Bulletin (in press).Google Scholar
  29. Shufman E. N., Porat S., Witztum E., Gandaeu D., Bar-Hamburger R., and Ginath Y. (1994) The efficacy of naltrexone in preventing reabuse of heroin after detoxication. Biol. Psychiatry 35, 935–945.PubMedCrossRefGoogle Scholar
  30. Takemori A. E., Ho Y. H., Naeseth J. S., and Portoghase P. S. (1988) Nor-Binaltrophimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J. Pharmacol. Exper. Ther. 246(1), 255–258.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.Department of PsychiatryTel Aviv Sourask Medical Center, and Tel-Aviv University Sackler School of MedicineTel-AvivIsrael
  2. 2.Department of Anatomy and AnthropologyTel-Aviv University Sackler School of MedicineTel-AvivIsrael

Personalised recommendations