Skip to main content
Log in

Potential treatment opportunities for Alzheimer’s disease through inhibition of secretases and Aβ immunization

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Research over the past ten years on Alzheimer’s disease has pursued many opportunities. Notable amongst the various approaches are efforts related to the “amyloid hypothesis.” This hypothesis posits that the beta amyloid peptide causes the extensive neuropathology and clinical decline associated with the disease. Extensive research in this area has shown that the beta amyloid peptide is produced by proteases termed “secretases” and it has been shown that blockade of secretase functions reduce the amount of beta amyloid peptide produced. An additional approach to reduce beta amyloid, through an increase in clearance mechanisms, is to immunize with the peptide itself and induce an antibody response. The specifically elicited antibodies then bind to and stimulate clearance of the peptide from the brain. These findings have stimulated several approaches to develop novel therapeutic strategies to treat Alzheimer’s disease that either are about or have entered the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacskai B. J., Kajdasz S. T., Christie R. H., Carter C., Games D., Seubert P., et al. (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nature Med. 7, 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Bard F., Cannon C., Barbour R., Burke R. L., Games D., Grajeda H., et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bothwell M., and Giniger E. (2000) Alzheimer’s disease: neurodevelopment converges with neurodegeneration. Cell. 102, 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin M. C., Crawford F., Houlden H., Warren A., Hughes D., Fidani L., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A. Y., Seubert P., Vigo-Pelfrey C., Lieberburg I., and Selkoe D. J. (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360, 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Westaway D., Xia W., Carlson G., Diehl T., Levesque G., et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice [see comments]. Nature Med. 3, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein [see comments]. Nature 391, 387–390.

    Article  PubMed  Google Scholar 

  • Dormanen M. C., Bishop J. E., Hammond M. W., Okamura W. H., Nemere I., and Norman A. W. (1994) Nonnuclear effects of the steroid hormone 1 alpha,25(OH) 2-vitamin D3: analogs are able to functionally differentiate between nuclear and membrane receptors. Biochem. Biophys. Res. Commun. 201, 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Dovey H. F., John V., Anderson J. P., Chen L. Z., de Saint Andrieu P., Fang L. Y., et al. (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J. Neurochem. 76, 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Pereztur J., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Knight H., Refolo L. M., Sanders S., Yu X., Picciano M., et al. (2000) Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7, 87–98.

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf O. M., Guthrie D. J., Walsh D. M., and Irvine G. B. (1998) The influence of the central region containing residues 19–25 on the aggregation properties and secondary structure of Alzheimer’s beta-amyloid peptide [In Process Citation]. Eur. J. Biochem. 256, 560–569.

    Article  PubMed  CAS  Google Scholar 

  • Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., et al. (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248, 1122–1124.

    Article  PubMed  CAS  Google Scholar 

  • Esler W. P., Kimberly W. T., Ostaszewski B. L., Diehl T. S., Moore C. L., Tsai J. Y., et al. (2000) Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nature Cell Biol. 2, 428–434.

    Article  PubMed  CAS  Google Scholar 

  • Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein [see comments]. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E. (2000) Cholinesterase inhibitors stabilize Alzheimer disease. Neurochem. Res. 25, 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  • Glenner G. G., and Wong C. W. (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Goate A., Chartier-Harlin M. C., Mullan M., Brown J., Crawford F., Fidani L., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease [see comments]. Nature 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  • Grundman M., and Thal L. J. (2000) Treatment of Alzheimer’s disease: rationale and strategies. Neurol. Clin. 18, 807–828.

    Article  PubMed  CAS  Google Scholar 

  • Grutzendler J., and Morris J. C. (2001) Cholinesterase inhibitors for Alzheimer’s disease. Drugs 61, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., et al. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism [see comments]. Nature 359, 322–325.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J. (1996) New insights into the genetics of Alzheimer’s disease. Ann. Med. 28, 255–258.

    PubMed  CAS  Google Scholar 

  • Hardy J., Chartier-Harlin M. C., and Mullan M. (1992) Alzheimer disease: the new agenda. Am. J. Human Genet. 50, 648–651.

    CAS  Google Scholar 

  • Higaki J., Quon D., Zhong Z., and Cordell B. (1995) Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14, 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice [see comments]. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Huang X., Atwood C. S., Moir R. D., Hartshorn M. A., Vonsattel J. P., Tanzi R. E., and Bush A. I. (1997) Zincinduced Alzheimer’s Abeta 1–40 aggregation is mediated by conformational factors. J. Biol. Chem. 272, 26,464–26,470.

    CAS  Google Scholar 

  • Iwatsubo T., Odaka A., Suzuki N., Mizusawa H., Nukina N., and Ihara Y. (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end- specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13, 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Janus C., Pearson J., McLaurin J., Mathews P. M., Jiang Y., Schmidt S. D., et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Kopan R., and Goate A. (2000) A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev. 14, 2799–2806.

    Article  PubMed  CAS  Google Scholar 

  • Kulic L., Walter J., Multhaup G., Teplow D. B., Baumeister R., Romig H., Capell A., Steiner H., and Haass C. (2000) Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc. Natl. Acad. Sci. USA 97, 5913–5918.

    Article  PubMed  CAS  Google Scholar 

  • Lemere C. A., Lopera F., Kosik K. S., Lendon C. L., Ossa J., Saido T. C., et al. (1996) The E280A presenilin 1 Alzheimer mutation produces increased Abeta 42 deposition and severe cerebellar pathology. Nature Med. 2, 1146–1150.

    Article  PubMed  CAS  Google Scholar 

  • Li Y. M., Xu M., Lai M. T., Huang Q., Castro J. L., DiMuzio-Mower J., et al. (2000) Photoactivated gammasecretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Luo Y., Bolon B., Kahn S., Bennett B. D., Babu-Khan S., Denis P., et al. (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nature Neuroscience 4, 231–232.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Sisk A., Mallory M., Mucke L., Schenk D., and Games D. (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J. Neurosci. 16, 5795–5811.

    PubMed  CAS  Google Scholar 

  • Morgan D., Diamond D. M., Gottschall P. E., Ugen K. E., Dickey C., Hardy J., et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408, 982–985.

    Article  PubMed  CAS  Google Scholar 

  • Mullan M., Crawford F., Axelman K., Houlden H., Lilius L., Winblad B., and Lannfelt L. (1992a) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet. 1, 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Mullan M., Houlden H., Windelspecht M., Fidani L., Lombardi C., Diaz P., et al. (1992b) A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat. Genet. 2, 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Naslund J., Haroutunian V., Mohs R., Davis K. L., Davies P., Greengard P., and Buxbaum J. D. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline [see comments]. JAMA 283, 1571–1577.

    Article  PubMed  CAS  Google Scholar 

  • Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., and Kokmen E. (1999) Mild cognitive impairment: clinical characterization and outcome [published erratum appears in Arch Neurol 1999 Jun;56(6):760]. Arch. Neurol. 56, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Petit A., Bihel F., da Costa C. A., Pourquie O., Checler F., and Kraus J. L. (2001) New protease inhibitors prevent gamma-secretase-mediated production of Abeta40/42 without affecting Notch cleavage. Nat. Cell Biol. 3, 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Roberds S. L., Anderson J., Basi G., Bienkowski M. J., Branstetter D. G., Chen K. S., et al. (2001). BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Human Mol. Genet. 10, 1317–1324.

    Article  CAS  Google Scholar 

  • Schenk D., Barbour R., Dunn W., Gordon G., Grajeda H., Guido T., et al. (1999) Immunization with amyloidbeta attenuates Alzheimer-disease-like pathology in the PDAPP mouse [see comments]. Nature 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Schenk D. B., P Seubert., Lieberburg I., and Wallace J. (2000) beta-peptide immunization: a possible new treatment for Alzheimer disease. Arch. Neurol. 57, 934–936.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1993) Physiological production of the beta-amyloid protein and the mechanism of Alzheimer’s disease. Trends Neurosci. 16, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2000) The genetics and molecular pathology of Alzheimer’s disease: roles of amyloid and the presenilins. Neurol. Clin. 18, 903–922.

    Article  PubMed  CAS  Google Scholar 

  • Seubert P., Oltersdorf T., Lee M. G., Barbour R., Blomquist C., Davis D. L., et al. (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature 361, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Seubert P., Vigo-Pelfrey C., Esch F., Lee M., Dovey H., Davis D., et al. (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359, 325–327.

    Article  PubMed  CAS  Google Scholar 

  • Sinha S., Anderson J. P., Barbour R., Basi G. S., Caccavello R., Davis D., et al. (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain [see comments]. Nature 402, 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S. (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA 89, 6075–6079.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S., Kim S. H., and Thinakaran G. (1999) Function and dysfunction of the presenilins. [Review] [42 refs]. Am. J. Human Genet. 65, 7–12.

    Article  CAS  Google Scholar 

  • Solomon B., Koppel R., Hanan E., and Katzav T. (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc. Natl. Acad. Sci. USA 93, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Sramek J. J., and Cutler N. R. (2000) Ongoing trials in Alzheimer’s disease. Expert. Opin. Investig. Drugs 9, 899–915.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H., Duff K., Capell A., Romig H., Grim M. G., Lincoln S., et al. (1999) A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J. Biol. Chem. 274, 28,669–28,673.

    CAS  Google Scholar 

  • Sturchler-Pierrat C., Abramowski D., Duke M., Wiederhold K. H., Mistl C., Rothacher S., et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94, 13,287–13,292.

    Article  CAS  Google Scholar 

  • Suzuki N., Cheung T. T., Cai X. D., Odaka A., Otvos L., Jr., Eckman C., et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264, 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Thal L. J. (2000) Trials to slow progression and prevent disease onset. J. Neural. Transm. Suppl. 59, 243–249.

    PubMed  CAS  Google Scholar 

  • Tolnay M., and Probst A. (2001) Frontotemporal lobar degeneration. An update on clinical, pathological and genetic findings. Gerontology 47, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Vassar R., Bennett B. D., Babu-Khan S., Kahn S., Mendiaz E. A., Denis P., et al. (1999) beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science 286, 735–741.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., De Los Angeles J., Miller D. D., Xia W., and Selkoe D. J. (1999) Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease. [Review] [81 refs]. Biochemistry 38, 11,223–11,230.

    CAS  Google Scholar 

  • Xia W., Ray W. J., Ostaszewski B. L., Rahmati T., Kimberly W. T., Wolfe M. S., et al. (2000) Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid beta-proteing generation. Proc. Natl. Acad. Sci. USA 97, 9299–9304.

    Article  PubMed  CAS  Google Scholar 

  • Yan R., Bienkowski M. J., Shuck M. E., Miao H., Tory M. C., Pauley A. M., et al. (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity [see comments]. Nature 402, 533–537.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Nishimura M., Arawaka S., Levitan D., Zhang L., Tandon A., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and beta APP processing. Nature 407, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J., Paganini L., Mucke L., Gordon M., Refolo L., Carman M., et al. (1996) Beta-secretase processing of the beta-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J. Biol. Chem. 271, 31,407–31,411.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Schenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenk, D., Games, D. & Seubert, P. Potential treatment opportunities for Alzheimer’s disease through inhibition of secretases and Aβ immunization. J Mol Neurosci 17, 259–267 (2001). https://doi.org/10.1385/JMN:17:2:259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:2:259

Index Entries

Navigation