Skip to main content
Log in

γ-Secretase inhibitors as molecular probes of presenilin function

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mutations in the presenilins cause Alzheimer’s disease (AD) and alter γ-secretase activity to increase the production of the 42-residue amyloid-β peptide (Aβ) found disproportionally in the cerebral plaques that characterize the disease. The serpentine presenilins are required for transmembrane cleavage of both the amyloid-β precursor protein (APP) and the Notch receptor by γ-secretase, and presenilins are biochemically associated with the protease. Inhibitors of γ-secretase have provided critical clues to the function of presenilins. Pharmacological profiling suggested that γ-secretase is an aspartyl protease, leading to the identification of two conserved aspartates important to presenilin’s role in proteolysis. Conversion of transition-state analogue inhibitors of γ-secretase to affinity reagents resulted in specific tagging of the heterodimeric form of presenilins, strongly suggesting that the active site of γ-secretase lies at the interface of the presenilin heterodimer. Heterodimeric presenilin appears to be the catalytic portion of a multi-protein γ-secretase complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berezovska O., Jack C., McLean P., Aster J. C., Hicks C., et al. (2000) Aspartate mutations in presenilin and γ-secretase inhibitors both impair Notch1 proteolysis and nuclear translocation with relative preservation of Notch1 signaling. J. Neurochem. 75(2), 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Diehl T. S., Gordon G., Biere A. L., Seubert P., et al. (1996) Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc. Natl. Acad. Sci. USA 93(23), 13,170–13,175.

    Article  CAS  Google Scholar 

  • De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., et al. (1999a) A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.

    Article  PubMed  Google Scholar 

  • De Strooper B. and Konig G. (1999b) Alzheimer’s disease. A firm base for drug development. Nature 402(6761), 471–472.

    Article  PubMed  Google Scholar 

  • De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665), 387–390.

    Article  PubMed  Google Scholar 

  • Esler W. P., Kimberly W. T., Ostaszewski B. L., Diehl T. S., Moore C. L., et al. (2000) Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biol. 2(7), 428–434.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A. K., Shin D., Downs D., Koelsch G., Lin X., et al. (2000) Design of potent inhibitors for human brain memapsin 2 (beta-secretase). J. Am. Chem. Soc. 122, 3522–3523.

    Article  CAS  Google Scholar 

  • Higaki J., Quon D., Zhong Z., and Cordell B. (1995) Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14(3), 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Hong L., Koelsch G., Lin X., Wu S., Terzyan S., et al. (2000) Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 290(5489), 150–153.

    Article  PubMed  CAS  Google Scholar 

  • Huff J. R. (1991) HIV protease: a novel chemotherapeutic target for AIDS. J. Med. Chem. 34(8), 2305–2314.

    Article  PubMed  CAS  Google Scholar 

  • James M. N., Sielecki A. R., Hayakawa K., and Gelb M. H. (1992) Crystallographic analysis of transition state mimics bound to penicillopepsin: difluorostatine-and difluorostatone-containing peptides. Biochemistry 31(15), 3872–3886.

    Article  PubMed  CAS  Google Scholar 

  • Klafki H., Abramowski D., Swoboda R., Paganetti P. A., and Staufenbiel M. (1996) The carboxyl termini of beta-amyloid peptides 1–40 and 1–42 are generated by distinct gamma-secretase activities. J. Biol. Chem. 271(45), 28,655–28,659.

    CAS  Google Scholar 

  • Levitan D., Doyle T. G., Brousseau D., Lee M. K., Thinakaran G., et al. (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 93(25), 14,940–14,944.

    Article  CAS  Google Scholar 

  • Levitan D. and Greenwald I. (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547), 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E., Wasco W., Poorkaj P., Romano D. M., Oshima J., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226), 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Li Y. M., Lai M. T., Xu M., Huang Q., DiMuzio-Mower J., et al. (2000a) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97(11), 6138–6143.

    Article  PubMed  CAS  Google Scholar 

  • Li Y. M., Xu M., Lai M. T., Huang Q., Castro J. L., et al. (2000b) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405(6787), 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Marciniszyn J., Jr., Hartsuck J. A., and Tang J. (1976) Mode of inhibition of acid proteases by pepstatin. J. Biol. Chem. 251(22), 7088–7094.

    PubMed  CAS  Google Scholar 

  • Moore C. L., Leatherwood D. D., Diehl T. S., Selkoe D. J., and Wolfe M. S. (2000) Difluoro Ketone Peptidomimetics Suggest a Large S1 Pocket for Alzheimer’s γ-Secretase: implications for Inhibitor Design. J. Med. Chem. 43(18), 3434–3442.

    Article  PubMed  CAS  Google Scholar 

  • Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21(5), 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Ratovitski T., Slunt H. H., Thinakaran G., Price D. L., Sisodia S. S., et al. (1997) Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J. Biol. Chem. 272(39), 24,536–24,541.

    Article  CAS  Google Scholar 

  • Rogaev E. I., Sherrington R., Rogaeva E. A., Levesque G., Ikeda M., et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376(6543), 775–778.

    Article  PubMed  CAS  Google Scholar 

  • Schroeter E. H., Kisslinger J. A., and Kopan R. (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393(6683), 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzman A. L., Singh N., Tsiper M., Gregori L., Dranovsky A., et al. (1999) Endogenous presenilin 1 redistributes to the surface of lamellipodia upon adhesion of Jurkat cells to a collagen matrix. Proc. Natl. Acad. Sci. USA 96(14), 7932–7937.

    Article  PubMed  CAS  Google Scholar 

  • Seiffert D., Bradley J. D., Rominger C. M., Rominger D. H., Yang F., et al. (2000) Presenilin-1 and -2 are molecular targets for gamma-secretase inhibitors. J. Biol. Chem. 275(44), 34,086–34,091.

    Article  CAS  Google Scholar 

  • Shearman M. S., Beher D., Clarke E. E., Lewis H. D., Harrison T., et al. (2000) L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry 39(30), 8698–8704.

    Article  PubMed  CAS  Google Scholar 

  • Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., et al. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89(4), 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R., Rogaev E. I., Liang Y., Rogaeva E. A., Levesque G., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534), 754–760.

    Article  PubMed  CAS  Google Scholar 

  • Silva A. M., Cachau R. E., Sham H. L., and Erickson J. W. (1996) Inhibition and catalytic mechanism of HIV-1 aspartic protease. J. Mol. Biol. 255(2), 321–346.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H., Romig H., Pesold B., Philipp U., Baader M., et al. (1999) Amyloidogenic function of the Alzheimer’s disease-associated presenilin 1 in the absence of endoproteolysis. Biochemistry 38(44), 14,600–14,605.

    Article  CAS  Google Scholar 

  • Thaisrivongs S., Pals D. T., Kati W. M., Turner S. R., Thomasco L. M., et al. (1986) Design and synthesis of potent and specific renin inhibitors containing difluorostatine, difluorostatone, and related analogues. J. Med. Chem. 29(10), 2080–2087.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G., Borchelt D. R., Lee M. K., Slunt H. H., Spitzer L., et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17(1), 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G., Harris C. L., Ratovitski T., Davenport F., Slunt H. H., et al. (1997) Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272(45), 28,415–28,422.

    Article  CAS  Google Scholar 

  • Wolfe M. S., Citron M., Diehl T. S., Xia W., Donkor I. O., et al. (1998) A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J. Med. Chem. 41(1), 6–9.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., De Los Angeles J., Miller D. D., Xia W., and Selkoe D. J. (1999a) Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease. Biochemistry 38(35), 11,223–11,230.

    Article  CAS  Google Scholar 

  • Wolfe M. S., and Haass C. (2001) The role of presenilins in gamma-secretase activity. J. Biol. Chem. 276(8), 5413–5416.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., Xia W., Moore C. L., Leatherwood D. D., Ostaszewski B., et al. (1999b) Peptidomimetic probes and molecular modeling suggest Alzheimer’s γ-secretases are intramembrane-cleaving aspartyl proteases. Biochemistry 38, 4720–4727.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T., et al. (1999c) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B., Iwasaki K., Vito P., Ganjei J. K., Lacana E., et al. (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274(5293), 1710–1713.

    Article  PubMed  CAS  Google Scholar 

  • Wong P. C., Zheng H., Chen H., Becher M. W., Sirinathsinghji D. J., et al. (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387(6630), 288–292.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, M.S. γ-Secretase inhibitors as molecular probes of presenilin function. J Mol Neurosci 17, 199–204 (2001). https://doi.org/10.1385/JMN:17:2:199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:2:199

Index Entries

Navigation