Skip to main content
Log in

Nuclear signaling

A common function of presenilin substrates?

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Major progress has recently been made in the characterization of the secretases involved in endoproteolytic processing of the Alzheimer’s disease (AD)-associated β-amyloid precursor protein, βAPP. βAPP is the precursor of the amyloid β-peptide, which is a major constituent of amyloid plaques in the brains of Alzheimer patients. It is now commonly believed that Aβ plays a pivotal role in the pathogenesis of AD, and that inhibiting the production of Aβ may help to treat or to prevent the disease. With β-secretase and the presenilins, two essential factors in the proteolytic generation of Aβ have now been identified. However, very little is still known about the biological function of the long-known βAPP. In this review we will discuss a novel putative function of βAPP in nuclear signaling, an activity, that βAPP may share with other presenilin substrates such as Notch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borg J. P., Ooi J., Levy E., and Margolis B. (1996) The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell Biol. 16, 6229–6241.

    PubMed  CAS  Google Scholar 

  • Brou C., Logeat F., Gupta N., Bessia C., LeBail O., Doedens J.R., et al. (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum J. D., Liu K. N., Luo Y., Slack J. L., Stocking K. L., Peschon J. J., et al. (1998) Evidence that tumor necrosis factor a converting enzyme is involved in regulated a-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27,765–27,767.

    Article  CAS  Google Scholar 

  • Cao X. and Sudhof T. C. (2001) A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Capell A., Grunberg J., Pesold B., Diehlmann A., Citron M., Nixon R., et al. (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J. Biol. Chem. 273, 3205–3211.

    Article  PubMed  CAS  Google Scholar 

  • Capell A., Steiner H., Romig H., Keck S., Baader M., Grim M. G., et al. (2000) Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch. Nat. Cell Biol. 2, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B., Annaert W., Cupers P., Saftig P., Craessaerts K., Mumm J. S., et al. (1999) A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.

    Article  PubMed  Google Scholar 

  • Donoviel D. B., Hadjantonakis A. K., Ikeda M., Zheng H., Hyslop P. S., and Bernstein A. (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810.

    Article  PubMed  CAS  Google Scholar 

  • Fiore F., Zambrano N., Minopoli G., Donini V., Duilio A., and Russo T. (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J. Biol. Chem. 270, 30,853–30,856.

    CAS  Google Scholar 

  • Herreman A., Serneels L., Annaert W., Collen D., Schoonjans L., and De Strooper B. (2000) Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell. Biol. 2, 461–462.

    Article  PubMed  CAS  Google Scholar 

  • Lammich S., Kojro E., Postina R., Gilbert S., Pfeiffer R., Jasionowski M., et al. (1999) Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96, 3922–3927.

    Article  PubMed  CAS  Google Scholar 

  • Logeat F., Bessia C., Brou C., LeBail O., Jarriault S., Seidah N. G., and Israel A. (1998) The Notch 1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112.

    Article  PubMed  CAS  Google Scholar 

  • McLendon C., Xin T., Ziani-Cherif C., Murphy M. P., Findlay K. A., Lewis P. A., et al. (2000) Cell-free assays for γ-secretase activity. Faseb J. 14, 2383–2386.

    PubMed  CAS  Google Scholar 

  • McLoughlin D. M. and Miller C. C. (1996) The intracellular cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett. 397, 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Mumm J. S. and Kopan R. (2000) Notch signaling: from the outside in. Dev. Biol. 228, 151–165.

    Article  PubMed  CAS  Google Scholar 

  • Mumm J. S., Schroeter E. H., Saxena M. T., Griesemer A., Tian X., Pan D. J., et al. (2000) A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch 1. Mol. Cell 5, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Pinnix I., Musunuru U., Tun H., Sridharan A., Golde T., Eckman C., et al. (2001) A novel γ-secretase assay based on detection of the putative C-terminal fragment-γ of amyloid β protein precursor. J. Biol. Chem. 276, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Ray W. J., Yao M., Mumm J., Schroeter E. H., Saftig P., Wolfe M., et al. (1999) Cell surface presenilin-1 participates in the g-secretase-like proteolysis of Notch. J. Biol. Chem. 274, 36,801–36,807.

    CAS  Google Scholar 

  • Sastre M., Steiner H., Fuchs K., Capell A., Condron M. M., Teplow D. B., and Haass C. (2001) Presenilin dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Reports (in press).

  • Schroeter E. H., Kisslinger J. A., and Kopan R. (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399, A23-A31.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H., Duff K., Capell A., Romig H., Grim M. G., Lincoln S., et al. (1999) A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling. J. Biol. Chem. 274, 28,669–28,673.

    CAS  Google Scholar 

  • Steiner H. and Haass C. (2000) Intramembrane proteolysis by presenilins. Nat. Rev. Mol. Cell Biol. 1, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H., Kostka M., Romig H., Basset G., Pesold B., Hardy J., et al. (2000) Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nat. Cell Biol. 2, 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Struhl G. and Adachi A. (1998) Nuclear access and action of Notch in vivo. Cell 93, 649–660.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G., Borchelt D. R., Lee M. K., Slunt H. H., Spitzer L., Kim G., et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G., Regard J. B., Bouton C. M., Harris C. L., Price D. L., Borchelt D. R., and Sisodia S. S. (1998) Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis. 4, 438–453.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., Xia W., Moore C. L., Leatherwood D. D., Ostaszewski B., Rahmati T., et al. (1999a) Peptidomimetic probes and molecular modeling suggest that Alzheimer’s γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38, 4720–4727.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T., and Selkoe D. J. (1999b) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Chen F., Levesque G., Nishimura M., Zhang D. M., Levesque L., et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem. 273, 16,470–16,475.

    CAS  Google Scholar 

  • Yu G., Nishimura M., Arawaka S., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 34–35.

    Article  Google Scholar 

  • Zhang L., Song L., Terracina G., Liu Y., Pramanik B., and Parker E. (2001) Biochemical characterization of the γ-secretase activity that produces β-amyloid peptides. Biochemistry 40, 5049–5055.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z., Nadeau P. W. S., Donoviel D., Yuan M. A. B., and Yankner B. A. (2000) Presenilins are required for γ-secretase cleavage of βAPP and transmembrane cleavage of Notch-1. Nat. Cell. Biol. 2, 463–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harald Steiner or Christian Haass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, H., Haass, C. Nuclear signaling. J Mol Neurosci 17, 193–198 (2001). https://doi.org/10.1385/JMN:17:2:193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:2:193

Index Entries

Navigation