Skip to main content

Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies

Abstract

Division of labor in honey bee colonies is highlighted by adult bees making a transition at 2–3 wk of age from working in the hive to foraging for nectar and pollen outside. This behavioral development involves acquisition of new tasks that may require advanced learning capabilities. Because acetylcholinesterase (AChE) hydrolyzes acetylcholine, a major neurotransmitter associated with learning in the insect brain, we searched for changes in AChE expression in the brain during bee behavioral development. Biochemical aspects of the AChE protein were similar in foragers and “nurse” bees that work in the hive tending brood. However, catalytic AChE activity was significantly lower in foragers. Cloning of bee AChE cDNA enabled mRNA analysis, which demonstrated that the forager-related decrease in AChE activity was associated with decreased AChE mRNA levels. This was particularly apparent in the mushroom bodies, a brain region known to be involved with olfactory and visual learning and memory. In addition, treatment with the AChE-inhibitor metrifonate improved performance in an olfactory-learning assay. These findings demonstrate long-term, naturally occurring developmental downregulation of AChE gene expression in the bee brain, and suggest that this genomic plasticity can contribute to facilitated learning capabilities in forager bees.

This is a preview of subscription content, access via your institution.

References

  • Acampora, D., Avantaggiato, V., Tuorto, F., Barone, P., Reichert, H., Finkelstein, R., and Simeone, A. (1998) MurineOtx1 and Drosophilaotd genes share conserved genetic functions required in invertebrate and vertebrate brain development. Development 125, 1691–1702.

    PubMed  CAS  Google Scholar 

  • Beeri, R., Le Novere, N., Mervis, R., Huberman, T., Grauer, E., Changeux, J. P., and Soreq, H. (1997) Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetyl cholinesterase-transgenic mice. J. Neurochem. 69, 2441–2451.

    PubMed  CAS  Article  Google Scholar 

  • Belzunces, L. P., Toutant, J. P., and Bounias, M. (1988) Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separatioin. Biochem. J. 255, 463–470.

    PubMed  CAS  Google Scholar 

  • Ben-Shahar, Y., Thompson, C. K., Hartz, S. M., Smith, B. H., and Robinson, G. E. (2000) Differences in performance on a reversal learning test and division of labor in honey bee colonies. Animal Cognit. 3, 119–125.

    Article  Google Scholar 

  • Cano Lozano, V. and Gauthier, M. (1998) Effects of the muscarinic antagonists atropine and pirenzepine on olfactory conditioning in the honeybee. Pharmacol. Biochem. Behav. 59, 903–907.

    PubMed  Article  CAS  Google Scholar 

  • de Belle, J. S. and Heisenberg, M. (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692–695.

    PubMed  Article  Google Scholar 

  • Durst, C., Eichmuller, S., and Menzel, R. (1994) Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav. Neural. Biol. 62, 259–263.

    PubMed  Article  CAS  Google Scholar 

  • Fahrbach, S. E. and Robinson, G. E. (1995) Behavioral development in the honey bee: toward the study of learning under natural conditions. Learn. Mem. 2, 199–224.

    PubMed  Article  CAS  Google Scholar 

  • Fahrbach, S. E. and Robinson, G. E. (1996) Juvenile hormone, behavioral maturation, and brain structure in the honey bee. Dev. Neurosci. 18, 102–114.

    PubMed  CAS  Google Scholar 

  • Fahrbach, S. E., Strande, J. L., and Robinson, G. E. (1995) Neurogenesis is absent in the brains of adult honey bees and does not explain behavioral neuroplasticity. Neurosci. Lett. 197, 145–148.

    PubMed  Article  CAS  Google Scholar 

  • Farris, S. M., Robinson, G. E., Davis, R. L., and Fahrbach, S. E. (1999) Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera. J. Comp. Neurol. 414, 97–113.

    PubMed  Article  CAS  Google Scholar 

  • Farris, S. M., Robinson, G. E., and Fahrbach, S. E. Experience and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honey bee J. Neurosci. In press.

  • Fresquet, N., Fournier, D., and Gauthier, M. (1998) A new attempt to assess the effect of learning processes on the cholinergic system: studies on fruitflies and honeybees. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 119, 349–353.

    PubMed  Article  CAS  Google Scholar 

  • Gauthier, M., Cano-Lozano, V., Zaoujal, A., and Richard, D. (1994) Effects of intracranial injections of scopolamine on olfactory conditioning retrieval in the honeybee. Behav. Brain Res. 63, 145–149.

    PubMed  Article  CAS  Google Scholar 

  • Giray, T., Guzman-Novoa, E., Huang, Z.-Y., and Robinson, G. E. (2000) Physiological correlates of genotypic variation in rate of honey bee behavioral development. Behav. Ecol. Sociobiol. 47, 17–28.

    Article  Google Scholar 

  • Giray, T. and Robinson, G. (1994) Effects of intracolony variability in behavioral development on plasticity of division of labor in honey bee colonies. Behav. Ecolsociobiol. 35, 13–20.

    Article  Google Scholar 

  • Gnagey, A. L., Forte, M., and Rosenberry, T. L. (1987) Isolation and characterization of acetylcholinesterase from Drosophila. J. Biol. Chem. 262, 13,290–13,298.

    CAS  Google Scholar 

  • Grifman, M., Galyam, N., Seidman, S., and Soreq, H. (1998) Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc. Natl. Acad. Sci. USA 95, 13,935–13,940.

    Article  CAS  Google Scholar 

  • Grisaru, D., Lev-Lehman, E., Shapira, M., Chaikin, E., Lessing, J. B., Eldor, A., et al. (1999a) Human osteogenesis involves differentiation-dependent increases in the morphogenically active 3′ alternative splicing variant of acetylcholinesterase. Mol. Cell. Biol. 19, 788–795.

    PubMed  CAS  Google Scholar 

  • Hammer, M. and Menzel, R. (1995) Learning and memory in the honeybee. J. Neurosci. 15, 1617–1630.

    PubMed  CAS  Google Scholar 

  • Huang, Z.-H., Robinson, G. E., Tobe, S. S., Yagi, K. J., Strambi, C., Strambi, A., and Stay, B. (1991) Hormonal regulation of behavioural development in the honey bee is based on changes in the rate of juvenile hormone biosynthesis. J. Insect Physiol. 37, 733–741.

    Article  CAS  Google Scholar 

  • Huang, Z. Y. and Robinson, G. E. (1992) Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proc. Natl. Acad. Sci. USA 89, 11,726–11,729.

    CAS  Google Scholar 

  • Incardona, J. P. and Rosenberry, T. L. (1996) Replacement of the glycoinositol phospholipid anchor of Drosophila acetylcholinesterase with a transmembrane domain does not alter sorting in neurons and epithelia but results in behavioral defects. Mol. Biol. Cell 7, 613–630.

    PubMed  CAS  Google Scholar 

  • Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D., and Strausfeld, N. J. (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52–77.

    PubMed  CAS  Google Scholar 

  • Kaufer, D., Friedman, A., Seidman, S., and Soreq, H. (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393, 373–377.

    PubMed  Article  CAS  Google Scholar 

  • Kreissl, S. and Bicker, G. (1989). Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. J. Comp. Neurol. 286, 71–84.

    PubMed  Article  CAS  Google Scholar 

  • Kucharski, R., Maleszka, R., Hayward, D. C., and Ball, E. E. (1998) A royal jelly protein is expressed in a subset of Kenyon cells in the mushroom bodies of the honey bee brain. Naturwissenschaften 85, 343–346.

    PubMed  Article  CAS  Google Scholar 

  • Loewenstein Lichtenstein, Y., Schwarz, M., Glick, D., Norgaard Pedersen, B., Zakut, H., and Soreq, H. (1995) Genetic predisposition to adverse consequences of anticholinesterases in “atypical” BCHE carriers. Nat. Med. 1, 1082–1085.

    PubMed  Article  CAS  Google Scholar 

  • Lozano, V. C., Bonnard, E., Gauthier, M., and Richard, D. (1996) Mecamylamine-induced impairment of acquirsition and retrieval of olfactory conditioning in the honeybee. Behav. Brain Res. 81, 215–222.

    PubMed  Article  CAS  Google Scholar 

  • Massoulie, J., Anselmet, A., Bon, S., Krejci, E., Legay, C., Morel, N., and Simon, S. (1998) Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J. Physiol. Paris 92, 183–190.

    PubMed  Article  CAS  Google Scholar 

  • Meller, V. H. and Davis, R. L. (1996) Biochemistry of insect learning: lessons from bees and flies. Insect Biochem. Mol. Biol. 26, 327–335.

    PubMed  Article  CAS  Google Scholar 

  • Mello, C., Nottebohm, F., and Clayton, D. (1995) Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene’s response to that song in zebra finch telencephalon. J. Neurosci. 15, 6919–6925.

    PubMed  CAS  Google Scholar 

  • Menzel, R., Erber, J., and Masuhr, T. (1974) Learning and memory in the honey bee, in Experimental Analysis of Insect Behavior, (Browne, L. B., ed.), Springer-Verlag, Berlin, pp. 195–218.

    Google Scholar 

  • Mesulam, M. M. and Geula, C. (1991) Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J. Comp. Neurol. 306, 193–220.

    PubMed  Article  CAS  Google Scholar 

  • Mobbs, P. (1982) The brain of the honey bee Apis mellifera. The connections and spatial organization of the mushroom bodies. Trans. R. Soc. Lond. B Biol. Sci. 298, 309–354.

    Article  Google Scholar 

  • Newcomb, R. D., East, P. D., Russell, R. J., and Oakeshott, J. G. (1996) Isolation of alpha cluster esterase genes associated with organophosphate resistance in Lucilia cuprina. Insect Mol. Biol. 5, 211–216.

    PubMed  CAS  Google Scholar 

  • Oh, M. M., Power, J. M., Thompson, L. T., Moriearty, P. L., and Disterhoft, J. F. (1999) Metrifonate increases neuronal excitability in CA1 pyramidal neurons from both young and aging rabbit hippocampus. J. Neurosci. 19, 1814–1823.

    PubMed  CAS  Google Scholar 

  • Pankiw, T., Huang, Z., Winston, M., and Robinson, G. (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44, 685–692.

    PubMed  Article  Google Scholar 

  • Ray, S. and Ferneyhough, B. (1999) Behavioral development and olfactory learning in the honeybee (Apismellifera). Dev. Psychobiol. 34, 21–27.

    PubMed  Article  CAS  Google Scholar 

  • Robinson, G. and Page, R. (1989) Genetic determination of nectar foraging, pollen foraging, and nest-site scouting in honey bee colonies. Behav. Ecol. Sociobiol. 24, 317–323.

    Article  Google Scholar 

  • Robinson, G. E. (1992) Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665.

    PubMed  Article  CAS  Google Scholar 

  • Robinson, G. E. (1999) Integrative animal behaviour and sociogenomics. Trends Ecol. Evol. 14, 202–205.

    PubMed  Article  Google Scholar 

  • Robinson, G. E., Heuser, L. M., LeConte, Y., Lenquette, F., and Hollingworth, R. M. (1999) Neurochemicals improve bee nestmate recognition. Nature 399, 534–535.

    Article  CAS  Google Scholar 

  • Scali, C., Giovannini, M. G., Bartolini, L., Prosperi, C., Hinz, V., Schmidt, B., and Pepeu, G. (1997) Effect of metrifonate on extracellular brain acetylcholine and object recognition in aged rats. Eur. J. Pharmacol. 325, 173–180.

    PubMed  Article  CAS  Google Scholar 

  • Schulz, D. J. and Robinson, G. E. (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and agerelated changes in the mushroom bodies. J. Comp. Physiol. [A] 184, 481–488.

    Article  CAS  Google Scholar 

  • Seidman, S., Aziz Aloya, R. B., Timberg, R., Loewenstein, Y., Velan, B., Shafferman, A., et al. (1994) Over-expressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos. J. Neurochem. 62, 1670–1681.

    PubMed  CAS  Article  Google Scholar 

  • Seidman, S., Sternfeld, M., Ben Aziz Aloya, R., Timberg, R., Kaufer Nachum, D., and Soreq, H. (1995) Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3′-terminal exons. Mol. Cell. Biol. 15, 2993–3002.

    PubMed  CAS  Google Scholar 

  • Shapira, M., Tur-Kaspa, I., Bosgraaf, L., Livni, N., Grant, A. D., Grisaru, D., Korner, M., Ebstein, R. P., and Soreq, H. (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum. Mol. Genet. 9, 1273–1281.

    PubMed  Article  CAS  Google Scholar 

  • Sigg, D., Thompson, C. M., and Mercer, A. R. (1997) Activity-dependent changes to the brain and behavior of the honey bee, Apis mellifera (L.). J. Neurosci. 17, 7148–7156.

    PubMed  CAS  Google Scholar 

  • Soreq, H. and Seidman S. (2001) Acetylcholinesterase—new roles for an old actor. Nature Neurosci. Reviews 2, 294–302.

    Article  CAS  Google Scholar 

  • Sternfeld, M., Ming, G., Song, H., Sela, K., Timberg, R., Poo, M., and Soreq, H. (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J. Neurosci. 18, 1240–1249.

    PubMed  CAS  Google Scholar 

  • Sternfeld, M., Shoham, S., Klein, O., Flores-Flores, C., Evron, T., Idelson, G. H., et al. (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc. Natl. Acad. Sci. USA 97, 8647–8652.

    PubMed  Article  CAS  Google Scholar 

  • Toma, D. P., Moore, D., Bloch, G., and Robinson, G. E. (2000) Changes in period expression in the brain and division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA in press.

  • Wagener-Hulme, C., Kuehn, J. C., Schulz, D. J., and Robinson, G. E. (1999) Biogenic amines and division of labor in honey bee colonies. J. Comp. Physiol. [A] 184, 471–479.

    Article  CAS  Google Scholar 

  • Winkler, J., Thal, L. J., Gage, F. H., and Fisher, L. J. (1998) Cholinergic strategies for Alzheimer’s disease. J. Mol. Med. 76, 555–567.

    PubMed  Article  CAS  Google Scholar 

  • Winston, M. (1987) The biology of the honey bee. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Withers, G. S., Fahrbach, S. E., and Robinson, G. E. (1993) Selective neuroanatomical plasticity and division of labour in the honeybee. Nature 364, 238–240.

    PubMed  Article  CAS  Google Scholar 

  • Ziegler, R., Engler, D. L., and Davis, N. T. (1995) Biotincontaining proteins of the insect nervous system, a potential source of interference with immunocytochemical localization procedures. Insect Biochem. Mol. Biol. 25, 569–574.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermona Soreq.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shapira, M., Thompson, C.K., Soreq, H. et al. Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci 17, 1–12 (2001). https://doi.org/10.1385/JMN:17:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:17:1:1

Index Entries

  • Honey bee
  • acetylcholinesterase
  • expression
  • behavioral development