Skip to main content

Advertisement

Log in

Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Plasmalogens are glycerophospholipids of neural membranes containing vinyl ether bonds. Their synthetic pathway is located in peroxisomes and endoplasmic reticulum. The rate-limiting enzymes are in the peroxisomes and are induced by docosahexaenoic acid (DHA). Plasmalogens often contain arachidonic acid (AA) or DHA at the sn-2 position of the glycerol moiety. The receptor-mediated hydrolysis of plasmalogens by cytosolic plasmalogen-selective phospholipase A2 generates AA or DHA and lysoplasmalogens. AA is metabolized to eicosanoids. The mechanism of signaling with DHA is not known. The plasmalogen-selective phospholipase A2 differs from other intracellular phospholipases A2 in molecular mass, kinetic properties, substrate specificity, and response to glycosaminoglycans, gangliosides, and sialoglycoproteins. A major portion of [3H]DHA incorporated into neural membranes is found at the sn-2 position of ethanolamine glycerophospholipids. Studies with a mutant cell line defective in plasmalogen biosynthesis indicate that the incorporation of DHA is reduced in this RAW 264.7 cell line by 50%. In contrast, the incorporation of AA remains unaffected. This is reversed completely when the growth medium is supplemented with sn-1-hexadecylglycerol, suggesting that DHA can be selectively targeted for incorporation into plasmalogens. We suggest that deficiencies of DHA and plasmalogens in peroxisomal disorders, Alzheimer’s disease (AD), depression, and attention deficit hyperactivity disorders (ADHD) may be responsible for abnormal signal transduction associated with learning disability, cognitive deficit, and visual dysfunction. These abnormalities in the signal-transduction process can be partially corrected by supplementation with a diet enriched with DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baykousheva S. P., Luthria D. L., and Sprecher H. (1995) Peroxisomal-microsomal communication in unsaturated fatty acid metabolism. FEBS Lett. 367, 198–200.

    Article  PubMed  CAS  Google Scholar 

  • Bourre J. M., Pascal G., Durand G., Masson M., Dumont O., and Piciotti M. (1984) Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J. Neurochem. 43, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Burgess J. R., Stevens L., Zhang W., and Peck L. (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 71, 327S-330S.

    PubMed  CAS  Google Scholar 

  • Clark J. D., Schievella A. R., Nalefski E. A., and Lin L.-L. (1995) Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 12, 83–117.

    Article  PubMed  CAS  Google Scholar 

  • Datta N. S., Wilson G. N., and Hajra A. K. (1984) Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. N. Engl. J. Med. 311, 1080–1083.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann B., Bräutigam C., and Thiery J. (1994) Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem. Biophys. Res. Commun. 204, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H.-C., and Horrocks L. A. (1995) Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rapoport S. I., and Horrocks L. A. (1997a) Membrane phospholipid alterations in Alzheimer disease: Deficiency of ethanolamine plasmalogens. Neurochem. Res. 22, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997b) Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30, 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997c) Phospholipase A2 and its role in brain tissue. J. Neurochem. 69, 889–901.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000) Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist, 6, 169–180.

    Article  CAS  Google Scholar 

  • Favreliere S., Barrier L., Durand G., Chalon S., and Tallineau C. (1998) Chronic dietary n-3 polyunsaturated fatty acids deficiency affects the fatty acid composition of plasmenylethanolamine and phosphatidylethanolamine differently in rat frontal cortex, striatum, and cerebellum. Lipids 33, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Gaposchkin D. P. and Zoeller R. A. (1999) Plasmalogen status influences docosahexaenoic acid levels in a macrophage cell line: insights using ether lipiddeficient variants. J. Lipid Res. 40, 495–503.

    PubMed  CAS  Google Scholar 

  • Ginsberg L., Xuereb J. H., and Gershfeld N. L. (1998) Membrane instability, plasmalogen content, and Alzheimer’s disease. J. Neurochem. 70, 2533–2538.

    Article  PubMed  CAS  Google Scholar 

  • Goldfischer S. L. (1988) Peroxisomal disease. Prog. Clin. Biol. Res. 282, 117–137.

    PubMed  CAS  Google Scholar 

  • Green P. and Yavin E. (1998) Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res. 52, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Green P., Glozman S., Kamensky B., and Yavin E. (1999) Developmental changes in rat brain membrane lipids and fatty acids: the preferential prenatal accumulation of docosahexaenoic acid. J. Lipid Res. 40, 960–966.

    PubMed  CAS  Google Scholar 

  • Guan Z., Wang Y., Cairns N. J., Lantos P. L., Dallner G., and Sindelar P. J. (1999) Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 740–747.

    PubMed  CAS  Google Scholar 

  • Hamazaki T., Sawazaki S., Itomura M., Asaoka E., Nagao Y., Nishimura N., et al. (1996) The effect of docosahexaenoic acid on aggression in young adults: a placebo-controlled double-blind study. J. Clin. Invest. 97, 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  • Heymans H. S. A., Schutgens R. B. H., Tan R., van den Bosch H., and Borst P. (1983) Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306, 69–70.

    Article  PubMed  CAS  Google Scholar 

  • Heymans H. S. A., Oorthuys J. W. E., Nelck G., Wanders R. J., and Schutgens R. B. H. (1985) Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N. Engl. J. Med. 313, 187–188.

    PubMed  CAS  Google Scholar 

  • Hibbeln J. R. and Salem N., Jr. (1995) Dietary polyunsaturated fatty acids and depression: When cholesterol does not satisfy. Am. J. Clin. Nutr. 62, 1–9.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992) Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59, 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A. (1972) Content, composition, and metabolism of mammalian and avian lipids that contain ether groups, in Ether Lipids: Chemistry and Biology (Snyder F., ed.), Academic Press, New York, pp. 177–272.

    Google Scholar 

  • Horrocks L. A. and Sharma M. (1982) Plasmalogens and O-alkyl glycerophospholipids, in Phospholipids, New Comprehensive Biochemistry, vol. 4 (Hawthorne J. N. and Ansell G. B., eds.), Elsevier Biomedical Press, Amsterdam, pp. 51–93.

    Google Scholar 

  • Horrocks L. A., Yeo Y. K., Harder H. W., Mozzi R., and Goracci G. (1986) Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase, in Advances in Cyclic Nucleotide and Protein Phosphorylation Research, vol. 20 (Greengard P. and Robison G.A., eds.), Raven Press, New York, pp. 263–292.

    Google Scholar 

  • Horrocks L. A. (1989) Sources of brain arachidonic acid uptake and turnover in glycerophospholipids. Ann. NY Acad. Sci. 559, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Yeo Y. K. (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40, 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Hossain M. S., Hashimoto M., and Masumura S. (1998) Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Hossain M. S., Hashimoto M., Gamoh S., and Masumura S. (1999) Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem. 72, 1133–1138.

    Article  PubMed  CAS  Google Scholar 

  • Jones C. R., Arai T., and Rapoport S. I. (1997) Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22, 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn S., Feskens E. J. M., Launer L. J., and Kromhout D. (1997) Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am. J. Epidemiol. 145, 33–41.

    PubMed  CAS  Google Scholar 

  • Kishida E., Yano M., Kasahara M., and Masuzawa Y. (1998) Distinctive inhibitory activity of docosahexaenoic acid against sphingosine-induced apoptosis. Biochim. Biophys. Acta Lipids Lipid Metab. 1391, 401–408.

    Article  CAS  Google Scholar 

  • Lee T. C. (1998) Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394, 129–145.

    Article  CAS  Google Scholar 

  • Lohner K. (1996) Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81, 167–184.

    Article  PubMed  CAS  Google Scholar 

  • Mahadik S. P., Mukherjee S., Horrobin D. F., Jenkins K., Correnti E. E., and Scheffer R. E. (1996) Plasma membrane phospholipid fatty acid composition of cultured skin fibroblasts from schizophrenic patients: Comparison with bipolar patients and normal subjects. Psychiatry Res. 63, 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Mandel H., Sharf R., Berant M., Wanders R. J. A., Vreken P., and Aviram M. (1998) Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: insights from investigations with plasmalogen-deficient cells. Biochem. Biophys. Res. Commun. 250, 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Martin R. E., Rodriguez de Turco E. B., and Bazan N. G. (1994) Developmental maturation of hepatic n-3 polyunsaturated fatty acid metabolism: supply of docosahexaenoic acid to retina and brain. J. Nutr. Biochem. 5, 151–160.

    Article  CAS  Google Scholar 

  • Martínez M., Ballabriga A., and Gil-Gibernau J. J. (1988) Lipids of the developing human retina: I. Total fatty acids, plasmalogens, and fatty acid composition of ethanolamine and choline phosphoglycerides. J. Neurosci. Res. 20, 484–490.

    Article  PubMed  Google Scholar 

  • Martínez M. (1989) Polyunsaturated fatty acid changes suggesting a new enzymatic defect in Zellweger syndrome. Lipids 24, 261–265.

    Article  PubMed  Google Scholar 

  • Martínez M. (1990) Severe deficiency of docosahexaenoic acid in peroxisomal disorders: a defect of delta 4 desaturation? Neurology 40, 1292–1298.

    PubMed  Google Scholar 

  • Martínez M., Vázquez E., García-Silva M. T., Manzanares J., Bertran J. M., Castelló F., and Mougan I. (2000) Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am. J. Clin. Nutr. 71, 376S-385S.

    PubMed  Google Scholar 

  • Mitchell D. C., Gawrisch K., Litman B. J., and Salem N., Jr. (1998) Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans. 26, 365–370.

    PubMed  CAS  Google Scholar 

  • Moore S. A., Yoder E., Murphy S., Dutton G. R., and Spector A. A. (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J. Neurochem. 56, 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Moore S. A. (1994) Local synthesis and targeting of essential fatty acids at the cellular interface between blood and brain: A role for cerebral endothelium and astrocytes in the accretion of CNS docosahexaenoic acid. World Rev. Nutr. Diet. 75, 128–133.

    PubMed  CAS  Google Scholar 

  • Morand O. H., Zoeller R. A., and Raetz C. R. H. (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J. Biol. Chem. 263, 11,597–11,606.

    CAS  Google Scholar 

  • Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997) Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17, 225–283.

    PubMed  CAS  Google Scholar 

  • Okada M., Amamoto T., Tomonaga M., Kawachi A., Yazawa K., Mine K., and Fujiwara M. (1996) The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neuroscience 71, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Ong W. Y., Horrocks L. A., and Farooqui A. A. (1999) Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J. Brain Res. 39, 391–400.

    Google Scholar 

  • Panganamala R. V., Horrocks L. A., Geer J. C., and Cornwell D. G. (1971) The position of the double bonds in the monounsaturated alk-1-enyl groups from the plasmalogens of human heart and brain. Chem. Phys. Lipids 6, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999) In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24, 1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Reiss D., Beyer K., and Engelmann B. (1997) Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 323, 807–814.

    PubMed  CAS  Google Scholar 

  • Roels F., Fischer S., and Kissling W. (1993) Polyunsaturated fatty acids in peroxisomal disorders: a hypothesis and a proposal for treatment. J. Neurol. Neurosurg. Psychiatry 56, 937.

    PubMed  CAS  Google Scholar 

  • Salem N. Jr., Kim H. Y., and Yergey J. A. (1986) Docosahexaenoic acid: membrane function and metabolism, in Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos A. P., Kifer R. R., and Martin R. E., eds.), Academic Press, Orlando, pp. 263–318.

    Google Scholar 

  • Schedin S., Sindelar P. J., Pentchev P., Brunk U., and Dallner G. (1997) Peroxisomal impairment in Niemann-Pick type C disease. J. Biol. Chem. 272, 6245–6251.

    Article  PubMed  CAS  Google Scholar 

  • Shikano M., Masuzawa Y., and Yazawa K. (1993) Effect of docosahexaenoic acid on the generation of platelet-activating factor by eosinophilic leukemia cells, Eol-1. J. Immunol. 150, 3525–3533.

    PubMed  CAS  Google Scholar 

  • Shikano M., Masuzawa Y., Yazawa K., Takayama K., Kudo I., and Inoue K. (1994) Complete discrimination of docosahexaenoate from arachidonate by 85 kDa cytosolic phospholipase A2 during the hydrolysis of diacyl- and alkenylacylglycerophosphoethanolamine. Biochim. Biophys. Acta Lipids Lipid Metab. 1212, 211–216.

    Article  CAS  Google Scholar 

  • Söderberg M., Edlund C., Kristensson K., and Dallner G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26, 421–425.

    Article  PubMed  Google Scholar 

  • Svennerholm L. (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain. J. Lipid Res. 9, 570–579.

    PubMed  CAS  Google Scholar 

  • Turini M. E. and Holub B. J. (1994) The cleavage of plasmenylethanolamine by phospholipase A2 appears to be mediated by the low affinity binding site of the TxA2/PGH2 receptor in U46619-stimulated human platelets. Biochim. Biophys. Acta Lipids Lipid Metab. 1213, 21–26.

    Article  CAS  Google Scholar 

  • Wanders R. J. A., Schumacher H., Heikoop J., Schutgens R. B. H., and Tager J. M. (1992) Human dihydroxyacetonephosphate acyltransferase deficiency: a new peroxisomal disorder. J. Inherited Metab. Dis. 15, 389–391.

    Article  PubMed  CAS  Google Scholar 

  • Wanders R. J. A., Dekker C., Hovarth V. A. P., Schutgens R. B. H., Tager J. M., Van Laer P., and Lecoutere D. (1994) Human alkyldihydroxyacetonephosphate synthase deficiency: a new peroxisomal disorder. J. Inherited Metab. Dis. 17, 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Wells K., Farooqui A. A., Liss L., and Horrocks L. A. (1995) Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  • Yang H. C., Farooqui A. A., and Horrocks L. A. (1994a) Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem. J. 299, 91–95.

    PubMed  CAS  Google Scholar 

  • Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994b) Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem. Biophys. Res. Commun. 199, 1158–1166.

    Article  PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., and Mostofsky D. I. (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. J. Neurosci. Res. 56, 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S., Sato A., and Okuyama H. (1998) Pathophysiological effects of dietary essential fatty acid balance on neural systems. Jpn. J. Pharmacol. 77, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988) A possible role for plasmalogens in protecting animal cells against photosensitized killing. J. Biol. Chem. 263, 11,590–11,596.

    CAS  Google Scholar 

  • Zoeller R. A., Rangaswamy S., Herscovitz H., Rizzo W. B., Hajra A. K., Das A. K., et al. (1992) Mutants in a macrophage-like cell line are defective in plasmalogen biosynthesis, but contain functional peroxisomes. J. Biol. Chem. 267, 8299–8306.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd A. Horrocks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Horrocks, L.A. Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 16, 263–272 (2001). https://doi.org/10.1385/JMN:16:2-3:263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:263

Index Entries

Navigation