Skip to main content
Log in

The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways

Visual transduction

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In order to understand the role of the high levels of docosahexaenoic acid (DHA) in neuronal and retinal tissue, a study of the effect of membrane lipid composition on the visual pathway, a G protein-coupled system, was undertaken. The level of metarhodopsin II (MII) formation was determined to be a function of phospholipid acyl-chain unsaturation, with the highest levels seen in DHA-containing bilayers. Similarly, the rate of coupling of MII to the retinal G protein, Gt, to form a MII-Gt complex, was enhanced in DHA bilayers relative to less unsaturated phospholipids. Complex formation initiates the first stage of amplification in the visual pathway. The activation of the cGMP phosphodiesterase (PDE), the effector enzyme, represents the integrated pathway function. DHA-containing bilayers were found to support PDE levels comparable to those of the rod outer segment (ROS) disk membranes. Inclusion of 30 mol cholesterol in the reconstituted bilayers had an inhibitory effect on each step in the visual pathway studied. Inclusion of cholesterol reduced MII formation and PDE activity and increased the lag time between the appearance of MII and the formation of the MII-Gt complex. However, signaling in DHA bilayers was far less affected by the addition of cholesterol than in bilayers containing less unsaturated phospholipids. These studies point up the importance of DHA acyl chains in promoting optimal function in G protein-coupled signaling pathways. The results reported here suggest that visual and cognitive deficits observed in n-3 deficiency may result from decreased efficiency in related neurotransmitter and visual signaling pathways in the absence of DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazan N. G., de Turco R., and Gordon W. C. (1993) Pathways for the uptake and conservation of docosahexaenoic acid in photoreceptors and synapses: biochemical and autoradiographic studies. Can J. Physiol. Pharm. 71, 690–698.

    CAS  Google Scholar 

  • Birch E. E., Garfield S., Hoffman D. R., Uauy R., and Birch D. G. (2000) A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in infants. Dev. Med. and Child. Neurol. 42, 174–181.

    Article  CAS  Google Scholar 

  • Engelberg H. (1992) Low serum cholesterol and suicide. Lancet 339, 727–729.

    Article  PubMed  CAS  Google Scholar 

  • Gibson R. and Makrides M. (1998) The role of long chain polyunsaturated fatty acids (LCPUFA) in neonatal nutrition. Acta Paediatr. 87, 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  • Greiner R. S., Moriguchi T., Hutton A., Slotnick B. M., and Salem N. Jr. (1999) Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34(Suppl.), S239-S243.

    Article  PubMed  CAS  Google Scholar 

  • Hamosh M. and Salem N. Jr. (1998) Long-chain polyunsaturated fatty acids. Biol. Neonate 74, 106–120.

    Article  PubMed  CAS  Google Scholar 

  • Hibbeln J. R. and Salem N. Jr. (1995) Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am. J. Clin. Nutr. 62, 1–9.

    PubMed  CAS  Google Scholar 

  • Jackson M. L. and Litman B. J. (1985) Rhodopsin-egg phosphatidylcholine reconstitution by an octyl glucoside dilution procedure. Biochim. Biophys. Acta 812, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Litman B. J. and Mitchell D. C. (1996) A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 31(Suppl.), S193-S197.

    Article  PubMed  CAS  Google Scholar 

  • Litman B. J. (1982) Purification of rhodopsin by concanavalin a affinity chromatography. Methods Enzymol. 82, 150–153.

    Google Scholar 

  • Mitchell D. C. and Litman B. J. (1998) Docosahexaenoic acid-containing phospholipids optimally promote rhodopsin activation, in Essential Fatty Acids and Eicosanoids (Riemersma R. A., Armstrong R., Kelly R. W., and Wilson R., eds.), AOCS Press, Champaign, IL, pp. 154–158.

    Google Scholar 

  • Mitchell D. C., Straume M., and Litman B. J. (1992) Role of Sn-1-saturated, Sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I-metarhodopsin II equilibrium. Biochemistry 31, 662–670.

    Article  PubMed  CAS  Google Scholar 

  • Muldoon M. F., Manuck S. B., and Matthews K. A. (1990) Lowering cholesterol concentration and mortality: a quantitative review of primary prevention trials. BMJ 301, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M., Connor W. E., Van Petten C., and Barstad L. (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73, 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Polozova A. and Litman B. J. (2000) Cholesterol dependent recruitment of Di22:6 PC by a G protein-coupled receptor into lateral domains. Biophys. J. 79, In Press.

  • Salem N. Jr. (1989) Omega-3 fatty acids: molecular and biochemical aspects, in New Protective Roles for Selected Nutrients (Spiller G. A. and Scala J., eds.), Alan R. Liss Inc., New York, NY, pp. 109–228.

    Google Scholar 

  • Siguel E. (1996) A new relationship between total/high density lipoprotein cholesterol and polyunsaturated fatty acids. Lipids 31(Suppl.), S51-S56.

    Article  PubMed  CAS  Google Scholar 

  • Stinson A. M., Wiegand R. D., and Anderson R. E. (1991a) Fatty acid and molecular species compositions of phospholipids and diacylglycerols. Exp. Eye Res. 52, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Stinson A. M., Wiegand R. D., and Anderson R. E. (1991b) Recycling of docosahexaenoic acid in rat retinas during N-3 fatty acid deficiency. J. Lipid Res. 32, 2009–2017.

    PubMed  CAS  Google Scholar 

  • Tanskanen A., Vartianinen E., Tuomilehto J., Viinamaki H., Lehtonen J., and Puska P. (2000) High serum cholesterol and risk of suicide. Am. J. Psychiatry 157, 648–650.

    Article  PubMed  CAS  Google Scholar 

  • Thorgeirsson T. E., Lewis J. W., Wallace-Williams S. E., and Kliger D. S. (1993) Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II. Biochemistry 32, 13,861–13,872.

    Article  CAS  Google Scholar 

  • Yee R. and Liebman P. A. (1978) Light-activated phosphodiesterase of the rod outer segment. Kinetics and parameters of activation and deactivation. J. Biol. Chem. 253, 8902–8909.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burton J. Litman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litman, B.J., Niu, SL., Polozova, A. et al. The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways. J Mol Neurosci 16, 237–242 (2001). https://doi.org/10.1385/JMN:16:2-3:237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:237

Index Entries

Navigation