Skip to main content
Log in

Docosahexaenoic acid accumulation in the prenatal brain

Prooxidant and antioxidant features

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Docosahexaenoic acid (DHA; 22:6n-3) is the major polyunsaturated fatty acid (FA) in the adult rat brain and it accumulates significantly more than any other FA prior to birth. Under normal nutritional conditions, fetal-brain DHA accumulation is substantial, with a “DHA accretion spurt” being demonstrated in the last period of gestation. Under stress conditions, this spurt may be harmful owing to an in crease in multiple double-bond targets for lipid peroxidation. The “DHA accretion spurt” is supported by the maternal supply of DHA or its precursor. Under maternal dietary n-3 FA deficiency, DHA content in the fetal brain can be restored by direct intraamniotic injection of mM concentrations of ethyl-DHA (Et-DHA). This approach may hold a potential advantage in the event of maternal-fetal insufficiency, a stress that may cause intrauterine growth retardation. It also revealed a potential beneficial effect after in utero ischemic stress; brain slices from Et-DHA-treated fetuses formed less oxidation products, as detected by thiobarbituric acid (TBA), compared to controls. Furthermore, brain-lipid extracts from Et-DHA but not ethyl-oleate treated fetuses, exhibited hydroxyl radical scavenging activity, as demonstrated by electron spin-resonance technique. Part of the beneficial effect of Et-DHA administration on the fetal brain may be attributed to enhanced free-radical scavenging capability, a phenomenon not directly related to vitamin E or lipid-soluble antioxidant levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander-North L. S., North J. A., Kiminyo K. P., Buettner G. R., and Spector A. A. (1994) Polyunsaturated fatty acids increase lipid radical formation induced by oxidant stress in endothelial cells. J. Lipid Res. 35, 1773–1785.

    PubMed  CAS  Google Scholar 

  • Aspberg A. and Tottmar O. (1992) Development of antioxidant enzymes in rat brain and in reaggregation culture of fetal brain cells. Brain Res. Dev. Brain Res. 66, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Reddy T. S., Bazan H. E. P., and Birkle D. L. (1986) Metabolism of arachidonic and docosahexaenoic acids in the retina. Prog. Lipid Res. 25, 595–606.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Rodriguez de Turco E. B., and Gordon W. C. (1994) Docosahexaenoic acid supply to the retina and its conservation in photoreceptor cells by active retinal pigment epithelium-mediated recycling. World Rev. Nutr. Diet 75, 120–123.

    PubMed  CAS  Google Scholar 

  • Billman G. E., Hallaq H., and Leaf A. (1994) Prevention of ischemia-induced ventricular fibrilation by w3 fatty acids. Proc. Natl. Acad. Sci. USA 91, 4427–4430.

    Article  PubMed  CAS  Google Scholar 

  • Bourre J. M., Francois M., Youyou A., Dumont O., Piciotti M., Pascal G., and Durand G. (1989) The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiologic parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880–1892.

    PubMed  CAS  Google Scholar 

  • Brand A., Gil S., Leibfritz D., and Yavin E. (1998) Direct administration and utilization of [1-13C] glucose by fetal brain and liver tissues under normal and ischemic conditions: 1H, 31P and 13C NMR studies. J. Neurosci. Res. 54, 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Brand A., Gil S., and Yavin E. (2000) N-methyl bases of ethanolamine prevent apoptotic cell death induced by oxidative stress in cells of oligodendroglia origin. J. Neurochem. 74, 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  • Buchmiller T. L., Kim C. S., Chopourian H. L., and Fonkalsrud E. W. (1994) Transamniotic fetal feeding: enhancement of growth in a rabbit model of intrauterine growth retardation. Surgery 116, 36–41.

    PubMed  CAS  Google Scholar 

  • Buettner G. R. and Mason R. P. (1990) Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo. Methods Enzymol. 186, 127–133.

    PubMed  CAS  Google Scholar 

  • Burdge G. C. and Postle A. D. (1995) Phospholipid molecular species composition of developing fetal guinea pig brain. Lipids 30, 719–724.

    Article  PubMed  CAS  Google Scholar 

  • Clandinin M. T., Chappell J. E., Leong S., Heim T., Swyer P. R., and Chance G. W. (1980) Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 4, 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Dekker G. A. and Sibai B. M. (1992) Early detection of preeclampsia. Am. J. Obstet. Gynecol. 165, 160–172.

    Google Scholar 

  • Dobbing J. and Sands J. (1979) Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H. and Cheeseman H. (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186, 407–420.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1998) Lipid peroxides in the free radical pathophysiology of brain diseases. Cell. Mol. Neurobiol. 18, 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Glozman S., Green P., and Yavin E. (1998) Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. J. Neurochem. 70, 2484–2491.

    Article  PubMed  CAS  Google Scholar 

  • Greisen G. (1992) Ischaemia of the preterm brain. Biol. Neonate. 62, 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Green P. and Yavin E. (1993) Elongation, desaturation and esterification of essential fatty acids by fetal rat brain in vivo. J. Lipid Res. 34, 2099–2107.

    PubMed  CAS  Google Scholar 

  • Green P. and Yavin E. (1995) Modulation of fetal rat brain and liver phospholipid content by intraamniotic ethyldocosahexaenoate administration. J. Neurochem. 65, 2555–2560.

    Article  PubMed  CAS  Google Scholar 

  • Green P. and Yavin E. (1996) Fatty acid composition of late embryonic and early postnatal rat brain. Lipids 31, 859–865.

    Article  PubMed  CAS  Google Scholar 

  • Green P., Kamensky B., and Yavin E. (1997) Replenishment of docosahexaenoic acid in n-3 fatty acid-deficient fetal rats by intraamniotic ethyl-docosahexaenoate administration. J. Neurosci. Res. 48, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Green P., Glozman S., Kamensky B., and Yavin E. (1999) Developmental changes in rat brain membrane lipids and fatty acids—the preferential prenatal accumulation of docosahexaenoic acid. J. Lipid Res. 40, 960–966.

    PubMed  CAS  Google Scholar 

  • Hahnel D., Beyer K., and Engelmann B. (1999) Inhibition of peroxyl radical-mediated lipid oxidation by plasmalogen phospholipids and alpha-tocopherol. Free Radic. Biol. 27, 1087–1094.

    Article  CAS  Google Scholar 

  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Hatam L. J. and Kayden H. J. (1979) A high-performance liquid chromotographic method for the determination of tocopherol in plasma and cellular elements of the blood. J. Lipid Res. 20, 639–645.

    PubMed  CAS  Google Scholar 

  • Kochachka P. W. (1986) Defence strategies against hypoxia and hypothermia. Science 231, 234–241.

    Article  Google Scholar 

  • Kohen R., Beit-Yannai E., Berry E. M., and Tirosh O. (1999) Overall low molecular weight antioxidant activity of biological fluids and tissue by cyclic voltammetry. Methods Enzymol. 300, 285–296.

    PubMed  CAS  Google Scholar 

  • Lin D. S., Anderson G. J., Connor W. E., and Neuringer M. (1994) Effect of dietary N-3 fatty acids upon the phospholipid molecular species of the monkey retina. Invest. Ophthalmol. Vis. Sci. 35, 794–803.

    PubMed  CAS  Google Scholar 

  • Martinez M. (1989) Dietary polyunsaturated fatty acids in relation to neural development in humans, in Dietary w3 and w6 Fatty Acids. Biological Effects and Nutritional Essentiality (Galli C. and Simopoulos A. P., eds.), Plenum Press, New York, pp. 123–133.

    Google Scholar 

  • Martinez M., Vazquez E., Garcia-Silva M. T., Manzanares J., Bertran J. M., Castello F., and Mougan I. (2000) Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders. Am. J. Clin. Nutr. 71, 376S-385S.

    PubMed  CAS  Google Scholar 

  • Moore S. A. (1994) Local synthesis and targeting of essential fatty acids at the cellular interface between blood and brain: a role for cerebral endothelium and astrocytes in the accretion of CNS docosahexaenoic acid. World Rev. Nutr. Diet 75, 128–133.

    PubMed  CAS  Google Scholar 

  • Nakashima M., Niwa M., Iwai T., and Uematsu T. (1999) Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic. Biol. Med. 26, 722–729.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M., Reisbick S., and Janowsky J. (1994) The role of n-3 fatty acids in visual and cognitive development: current evidence and methods of assessment. J. Pediatr. 125, S39–47.

    PubMed  CAS  Google Scholar 

  • Oppenheim R. W. (1991) Cell death during development of the nervous system. Ann. Rev. Neurosci. 14, 453–501.

    Article  PubMed  CAS  Google Scholar 

  • Phillips J. D., Fonkalsrud E. W., Mirzayan A., Kim C. S., Kieu A., Zeng H., and Diamond J. M. (1991) Uptake and redistribution of continuously infused intraamniotic nutrients in fetal rabbits. J. Pediatr. Surg. 26, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Reisbick S., Neuringer M., Hasnain R., and Connor W. E. (1994) Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol. Behav. 55, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Salem N. Jr. and Pawlosky R. J. (1994) Arachidonate and docosahexaenoate biosynthesis in various species and compartments in vivo. World Rev. Nutr. Diet 75, 114–119.

    PubMed  CAS  Google Scholar 

  • Singh, R. and Pathak, D. N. (1990) Lipid peroxidation and glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activities in FeCl3-induced epileptogenic foci in the rat brain. Epilepsia 31, 15–26.

    PubMed  CAS  Google Scholar 

  • Sindelar P. J., Guan Z., Dallner G., and Ernster L. (1999) The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic. Biol. Med. 26, 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Tan S., Zhou F., Nielsen V. G., Wang Z., Gladson C. L., and Parks D. A. (1998) Sustained hypoxia-ischemia results in reactive nitrogen and oxygen species production and injury in the premature fetal rabbit brain. J. Neuropathol. Exp. Neurol. 57, 544–553.

    Article  PubMed  CAS  Google Scholar 

  • Tuor U. I. and Grewal D. (1994) Autoregulation of cerebral blood flow: influence of local brain development and postnatal age. Am. J. Physiol. 267, H2220-H2228.

    PubMed  CAS  Google Scholar 

  • Uauy R., Birch E., Birch D., and Peirano P. (1992) Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J. Pediatr. 120, S168–180.

    Article  PubMed  CAS  Google Scholar 

  • Vannucci R. C. and Duffy T. E. (1976) Carbohydrate metabolism in the fetal and neonatal rat brain during anoxia and recovery. Am. J. Physiol. 230, 1269–1275.

    PubMed  CAS  Google Scholar 

  • Wagner B. A., Buettner, G. R., and Burns, C. P. (1994) Free-radical mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33, 4449–4453.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright P. E., Huang Y. S., Bulman-Fleming B., Mills D. E., Redden P., and McCutcheon D. (1991) The role of essential fatty acids in brain and behavioral development: a cross-fostering study in the mouse. Lipids 26, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Walsh S. W. (1985) Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am. J. Obstet. Gynec. 152, 335–350.

    PubMed  CAS  Google Scholar 

  • Williams C. D., Mallard C., Tan W., Johnston B., Gunn A., Marks K., and Gluckman P. (1995) Prenatal brain injury. Pathophysiology and therapeutic intervention. Ann. NY Acad. Sci. 15, 304–305.

    Article  Google Scholar 

  • Williams G. D., Dardzinski B. J., Buckalew A. R., and Smith M. B. (1997) Modest hypothermia preserves cerebral energy metabolism during hypoxia-ischemia and correlates with brain damage: a 31P nuclear magnetic resonance study in unanesthetized neonatal rats. Pediatr. Res. 42, 700–778.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S., Watanabe S., Kobayashi T., Hata N., Misawa Y., Utsumi H., and Okuyama H. (1999) Dietary docosahexaenoic acid enhances ferric nitrilotriacetate-induced oxidative damage in mice but not when additional alpha-tocopherol is supplemented. Free Radic. Res. 30, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shimazaki H., and Ueta N. (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as a possible cause of postischemic injury. J. Neurosurg. 53, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Zhao W., Richardson J. S., Mombourquette M. J., Weil J. A., Ijaz S., and Shuaib A. (1996) Neuroprotective effects of hypothermia and U-78517F in cerebral ischemia are due to reducing oxygen-based free radicals: an electron paramagnetic resonance study with gerbils. J. Neurosci. Res. 45, 282–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephraim Yavin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavin, E., Glozman, S. & Green, P. Docosahexaenoic acid accumulation in the prenatal brain. J Mol Neurosci 16, 229–235 (2001). https://doi.org/10.1385/JMN:16:2-3:229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:229

Index Entries

Navigation