Skip to main content
Log in

Biosynthesis of docosahexaenoate-containing glycerolipid molecular species in the retina

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Vertebrate retinas are highly enriched in long-chain polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (22:6n-3, DHA). In the present study, we investigated the role of de novo synthesis in the enrichment of 22:6n-3 in characteristic molecular species of retinal glycerolipids. Following the incubation of fresh dark-adapted retinas with [2-3H]-glycerol, individual glycerolipids were isolated and converted into either diacylglycerol acetates (DGAC) or diacylglycerol benzoates (DGBZ), followed by high-performance liquid chromatography (HPLC) and flow-through radioactivity detection. Total lipids from rat retinas incubated with [3H]-glycerol were analyzed. Unlike what was observed with frog retinas, relative larger of amounts of di-22:6 molecular species were synthesized de novo. In both rat and frog retinas, there was synthesis of glycerolipid molecular species containing two PUFA (one of which was 22:6) in larger amounts than predicted by their steady-state mass levels. These results demonstrate that the unique molecular species of retinal glycerolipids are derived only in part through de novo synthesis, but that molecular rearrangement (remodeling) and differential turnover must also play a role in maintaining the high levels of 22:6 found in rod phohtoreceptor outer segments (ROS) membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R. E. and Maude M. B. (1972) Lipids of ocular tissues: VII. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch. Biochem. Biophys. 151, 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Anderson G. J., Connor W. E., Corliss J. D., and Lin, D. S. (1989) Rapid modulation of the n-3 docosahexaenoic acid levels in the brain and retina of the newly hatched chick. J. Lipid Res. 30, 433–441.

    PubMed  CAS  Google Scholar 

  • Anderson G. J., Connor W. E., and Corliss J. D. (1990) Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr. Res. 27, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Benolken R. M., Anderson R. E., and Wheeler T. G. (1973) Membrane fatty acids associated with the electrical response in visual excitation. Science 182, 1253–1254.

    Article  PubMed  CAS  Google Scholar 

  • Birch D. G., Birch E. E., Hoffman D. R., and Uauy R. D. (1992a) Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest. Ophthalmol. Vis. Sci. 33, 2365–2376.

    PubMed  CAS  Google Scholar 

  • Bourre J. M., Francois M., Youyou A., Dumont O., Piciotti M., Pascal G., and Durand G. (1989) The effects of dietary α-linolenic acid on the composition of nerve membrane, enzymatic activity, amplitude of electro-physiological parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880–1890.

    PubMed  CAS  Google Scholar 

  • Brown M. F. and Gibson N. J. (1992) Biological function of docosahexaenoic acid in the retina rod disk membrane, in The Third International Congress on Essential Fatty Acid and Eicosanoids (Sinclair A. and Gibson R., eds.), American Oil Chemists’ Society, Champaign, IL, pp. 134–138.

    Google Scholar 

  • Brown M. F. (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159–180.

    Article  PubMed  CAS  Google Scholar 

  • Chen H., Wiegand R. D., and Anderson R. E. (1992) Decreased docosahexaenoic acid levels in retina and pigment epithelium of frogs fed crickets. Exp. Eye Res. 54, 885–892.

    Article  PubMed  CAS  Google Scholar 

  • Chen H. and Anderson R. E. (1993) Comparison of uptake and incorporation of docosahexaenoic and arachidonic acids by frog retinas. Curr. Eye Res. 12, 851–860.

    PubMed  CAS  Google Scholar 

  • Choe H-G., Wiegand R. D., and Anderson R. E. (1989) Quantitative analysis of retinal glycerolipid molecular species acetylated by acetolysis. J. Lipid Res. 30, 454–457.

    PubMed  CAS  Google Scholar 

  • Choe H-G. and Anderson R. E. (1990) Unique molecular species composition of glycerolipids of frog rod outer segments. Exp. Eye Res. 51, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Fliesler S. J. and Anderson R. E. (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22, 79–131.

    Article  PubMed  CAS  Google Scholar 

  • Futterman S., Downer J. L., and Hendrickson A. (1971) Effect of essential fatty acid deficiency on the fatty acid composition, morphology, and eletroretinographic response of the retina. Invest. Ophthalmol. 10, 151–156.

    PubMed  CAS  Google Scholar 

  • Ghosh S., Strum J. C., and Bell R. M. (1997) Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 11, 45–50.

    PubMed  CAS  Google Scholar 

  • Holmsen H., Hindenes J-O., and Fukami M. (1992) Glycerophospholipid metabolism: back to the future. Thromb. Res. 67, 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Lin D. S., Anderson G. J., Connor W. E., and Neuringer M. (1994) Effect of dietary n-3 fatty acids upon the phospholipid molecular species of the monkey retina. Invest. Ophthalmol. Vis. Sci. 35, 794–803.

    PubMed  CAS  Google Scholar 

  • Louie K., Wiegand R. D., and Anderson R. E. (1988) Docosahexaenoate-containing molecular species of glycerophospholipids from frog retina rod boater segments show different rates of biosynthesis and turnover. Biochemistry 27, 9014–9020.

    Article  PubMed  CAS  Google Scholar 

  • Louie K., Zimmerman W. F., Keys S., and Anderson R. E. (1991) Phospholipid molecular species from isolated bovine rod outer segments incorporate exogenous fatty acids at different rates. Exp. Eye Res. 53, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald J. I. and Sprecher H. (1991) Phospholipid fatty acid remodeling in mammalian cells. Biochim. Biophys. Acta 1084, 105–121.

    PubMed  CAS  Google Scholar 

  • Mitchell D. C., Gawrisch K, Litman B. J., and Salem N. Jr. (1998) Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans. 26, 365–370.

    PubMed  CAS  Google Scholar 

  • Neuringer M., Connor W. E., Van Patten C., and Barstad L. (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73, 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M. and Connor W. E. (1986) N-3 fatty acids in the brain and retina: evidence for their essentiality. Nutr. Rev. 44, 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M., Connor W. E., Lin D. S., Barstad L., and Luck S. (1986) Biochemical and functional effects of prenatal and postnatal n-3 fatty acids deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  • Neuringer M. and Connor W. E. (1987) The importance of dietary n-3 fatty acids in the development of the retina and nervous system, in Proceedings of the AOCS Short Course on PUFA and Eicosanoids (Lands W. E. M., ed.), American Oil Chemists’ Society, Champaign, IL, pp. 301–311.

    Google Scholar 

  • Neuringer M., Connor W. E., Lin D. S., Anderson G. L., and Barstad L. (1991) Dietary omega-3 fatty acids: effects on retinal lipid composition and function in primates, in Retinal Degenerations (Anderson R. E., Hollyfield J. G., and LaVail M. M., eds.), CRC, Boca Raton, FL, pp. 117–129.

    Google Scholar 

  • Stinson A. M., Wiegand R. D., and Anderson R. E. (1991) Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retinal membranes. Exp. Eye Res. 52, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Uauy R. D., Birch D. G., Birch E. E., Tyson J. E., and Hoffman D. R. (1990) Effect of dietary omega-3 fatty acids on retinal function of very-low-weight neonates. Pediatr. Res. 28, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Vance D. E. (1996) Glycerolipid biosynthesis in eukaryotes, in new comprehensive biochemistry, in Biochemistry of Lipids, Lipoproteins, and Membranes, vol. 31. (Vance, D. E. and Vance, J. E., eds.), Elsevier, Amsterdam, pp. 153–165.

    Google Scholar 

  • Wheeler T. G., Benolken R. M., and Anderson R. E. (1975) Visual membrane: specificity of fatty acid precursors for the electrical response to illumination. Science 188, 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand R. D. and Anderson R. E. (1983) Phospholipid molecular species of frog rod outer segment membranes. Exp. Eye Res. 37, 159–173.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand R. D., Koutz C. A., Stinson, A. M., and Anderson R. E. (1991) Conservation of docosahexaenoic acid in rod outer segments of rat retina during n-3 and n-6 fatty acid deficiency. J. Neurochem. 57, 1690–1699.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Chen, H. & Anderson, R.E. Biosynthesis of docosahexaenoate-containing glycerolipid molecular species in the retina. J Mol Neurosci 16, 205–214 (2001). https://doi.org/10.1385/JMN:16:2-3:205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:205

Index Entries

Navigation