Skip to main content
Log in

Cellular transport of nonesterified fatty acids

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transport of nonesterified fatty acids (NEFA) is an important component of whole-body energy metabolism, and derangements in NEFA transport have been linked to several diseases. NEFA are transferred from their sites of production to cells in hepatic and peripheral tissues by mechanisms that are regulated in part by cell status and as determined by the covalent structure of the NEFA species. Major barriers to physical transport are transfer from the hydrophobic surfaces on cell membranes and NEFA-binding proteins, such as albumin, into the surrounding aqueous phase and translocation across a membrane that contains a very hydrophobic interior; this process could be purely diffusive or require specific protein cofactors. Herein evidence is provided suggesting that this step is driven by intracellular metabolism that supports a NEFA gradient across the cell membrane. According to current models of NEFA transfer, the rate-limiting step is likely to be desorption of NEFA from the inner leaflet of the cell membrane or intracellular metabolism; for very long chain NEFA, the former is more likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abumrad N., Harmon C., and Ibrahimi A. (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J. Lipid Res. 39, 2309–2318.

    PubMed  CAS  Google Scholar 

  • Berk P. D., Wada H., Horio Y., Potter B. J., Sorrentino D., Zhou S. L., et al. (1990) Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc. Natl. Acad. Sci. USA 87, 3484–3488.

    Article  PubMed  CAS  Google Scholar 

  • Brown A. P., Coleman J., Tommey A. M., Watson M. D., and Slabas A. R. (1994) Isolation and characterisation of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol. Biol. 26, 211–223.

    Article  PubMed  CAS  Google Scholar 

  • Civelek V. N., Hamilton J. A., Tornheim K., Kelly K. L., and Corkey B. E. (1996) Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc. Natl. Acad. Sci. USA 93, 10,139–10,144.

    Article  CAS  Google Scholar 

  • Coe N. R., Smith A. J., Frohnert B. I., Watkins P. A., and Bernlohr D. A. (1999) The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J. Biol. Chem. 274, 36,300–36,304.

    Article  CAS  Google Scholar 

  • Dietschy J. M. (1978) Effect of diffusion barriers on solute uptake into biological systems, in Microenvironments and Metabolic Compartmentation (Srere P. A. and Estabrook R. W., eds.), Academic Press, New York, pp. 401–418.

    Google Scholar 

  • Doody M. C., Pownall H. J., Kao Y. J., and Smith L. C. (1980) Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry 19, 108–116.

    Article  PubMed  CAS  Google Scholar 

  • Eigen M., Kruse W., Maass G., and De Maeyer L. (1964) Rate constants of protolytic reactions in aqueous solution. Prog. Reaction Kinetics 2, 285–289.

    CAS  Google Scholar 

  • Febbraio M., Abumrad N. A., Hajjar D. P., Sharma K., Cheng W., Pearce S.F., et al. (1999) A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 274, 19,055–19,062.

    Article  CAS  Google Scholar 

  • Fromherz P. (1973) A new method for investigation of lipid assemblies with a lipoid pH indicator in monomolecular films. Biochim. Biophys. Acta 323, 326–334.

    Article  PubMed  CAS  Google Scholar 

  • Gargiulo C. E., Stuhlsatz-Krouper S. M., and Schaffer J. E. (1999) Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. J. Lipid Res. 40, 881–892.

    PubMed  CAS  Google Scholar 

  • Glasstone S., Laidler K., and Eyring E. (1941) The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. McGraw-Hill, New York, p. 100.

    Google Scholar 

  • Haberland M. E. and Reynolds J. A. (1975) Interaction of l-alpha-palmitoyl lysophosphatidylcholine with the AI polypeptide of high density lipoprotein. J. Biol. Chem. 250, 6636–6639.

    PubMed  CAS  Google Scholar 

  • Hamilton J. A. (1998) Fatty acid transport: difficult or easy? J. Lipid Res. 39, 467–481.

    PubMed  CAS  Google Scholar 

  • Homan R. and Pownall H. J. (1988) Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length. Biochim. Biophys. Acta 938, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Kamp F., Zakim D., Zhang F., Noy N., and Hamilton J. A. (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34, 11,928–11,937.

    Article  CAS  Google Scholar 

  • Man M. Z., Hui T. Y., Schaffer J. E., Lodish H. F., and Bernlohr D. A. (1996) Regulation of the murine adipocyte fatty acid transporter gene by insulin. Mol. Endocrinol. 10, 1021–1028.

    Article  PubMed  CAS  Google Scholar 

  • Massey J. B., Bick D. H., and Pownall H. J. (1997) Spontaneous transfer of monoacyl amphiphiles between lipid and protein surfaces. Biophys. J. 72, 1732–1743.

    Article  PubMed  CAS  Google Scholar 

  • Pownall H. J., Bick D. L., and Massey J. B. (1991) Spontaneous phospholipid transfer: development of a quantitative model. Biochemistry 30, 5696–5700.

    Article  PubMed  CAS  Google Scholar 

  • Ruan H. and Pownall H. J. (2001) Effects of adipocyte 1-acyl-glycerol-3-phosphate acyltransferase overex-pression on energy transport in cultured muscle and fat cells. Diabetes 50, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer J. E. and Lodish H. F. (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Watkins P. A. (1997) Fatty acid activation. Prog. Lipid Res. 36, 55–83.

    Article  PubMed  CAS  Google Scholar 

  • Watkins P. A., Lu J. F., Steinberg S. J., Gould S. J., Smith K. D., and Braiterman L. T. (1998) Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J. Biol. Chem. 273, 18,210–18,219.

    Article  CAS  Google Scholar 

  • Wolkowicz P. E., Pownall H. J., and McMillin-Wood J. B. (1982) (I-pyrenebutyryl)carnitine and 1-pyrenebutyryl coenzyme A: fluorescent probes for lipid metabolite studies in artificial and natural membranes. Biochemistry 21, 2990–2996.

    Article  PubMed  CAS  Google Scholar 

  • Wolkowicz P. E., Pownall H. J., Pauly D. F., and McMillin-Wood J. B. (1984) Pyrenedodecanoylcarnitine and pyrenedodecanoyl coenzyme A: kinetics and thermodynamics of their intermembrane transfer. Biochemistry 23, 6426–6432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Pownall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pownall, H.J. Cellular transport of nonesterified fatty acids. J Mol Neurosci 16, 109–115 (2001). https://doi.org/10.1385/JMN:16:2-3:109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:109

Index Entries

Navigation