Skip to main content
Log in

Effect of amphetamine on the expression of the metabotropic glutamate receptor 5 mRNA in developing rat brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mechanisms underlying the acute effects of amphetamine (AMP) were examined by monitoring the expression of metabotropic glutamate receptor 5 (mGluR5) and specific 3H-glutamate binding in the developing rat brain. Each of the postnatal day (P) 4, P21 and P60 rats received one intraperitoneal injection of AMP, 5 mg/kg or saline and were sacrificed one hour later. In situ hybridization analysis revealed that the AMP treatment raised the levels of the mGluR5 mRNA by 9–28% in the neurons of the layer 5 of motor and somatosensory cortices, whereas reduced the levels by 12–28% in the layer 5 of perirhinal cortex and the ventromedial part of caudate-putamen of the 3 ages. In the layer 2/3 neurons of cingular cortex, an 18% higher and 14% and 22% lower than control levels of the mRNA were detected in the P4 and in the P21 and P60 rats injected with AMP. Moreover, the levels of mGluR5 mRNA in the hippocampi and dentate gyri were elevated by AMP to 110–151% of controls in the rats of 3 ages. Reversible 3H-glutamate binding assay showed an increase of 25% and a 12% decrease in the binding levels in the cortices of AMP-treated P4 and P21 rats. The AMP administration also produced a 27% reduction and 62% elevation in the binding of the hippocampi of P4 and P60 rats. The results reveal age- and region-dependent changes in the expression of the glutamate receptors induced by AMP and may indicate differential plastic capability of the neurons to the drug perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attarian S. and Amalric M. (1997) Microinfusion of the metabotropic glutamate receptor agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid into the nucleus accumbens induces dopamine-dependent locomotor activation in the rat. Eur. J. Neurosci. 9, 809–816.

    Article  PubMed  CAS  Google Scholar 

  • Axt K. J. and Molliver M. E. (1991) Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse 9, 302–313.

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua J. A., Downes C. P., and Lowenstein P. R. (1995) Transiently selective activation of phosphoinositide turnover in layer V pyramidal neurons after specific mGluRs stimulation in rat somatosensory cortex during early postnatal development. J. Neurosci. 15, 7916–7928.

    PubMed  CAS  Google Scholar 

  • Björklund A. and Lindvall O. (1984) Dopamine-containing systems in the CNS, in Handbook of Chemical Neuroanatomy, Classical Transmitters in the CNS, part I. vol. 2, Björklund A. and Hökfelt T., eds., Elsevier, Amsterdam, pp. 103,104.

    Google Scholar 

  • Burrows K. B. and Meshul C. K. (1997) Methamphetamine alters presynaptic glutamate immunoreactivity in the caudate nucleus and motor cortex. Synapse 27, 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cahusac P. M. B. (1994) Cortical layer-specific effects of the metabotropic glutamate receptor agonist 1S,3R-ACPD in rat primary somatosensory cortex in vivo. Eur. J. Neurosci. 6, 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  • Eisch A. J., Gaffney M., Weihmuller F. B., O’Dell S. J., and Marshall J. F. (1992) Striatal subregions are differentially vulnerable to the neurotoxic effects of methamphetamine. Brain Res. 598, 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Eisch A. J., O’Dell S. J., and Marshall J. F. (1996) Striatal and cortical NMDA receptors are altered by a neurotoxic regimen of methamphetamine. Synapse 22, 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Ellinwood E. H., Jr. and Balster R. L. (1974) Rating the behavioral effects of amphetamine. Eur. J. Pharmacol. 28, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Gao X.-M. and Tamminga C. A. (1994) An increase in NMDA-sensitive [3H]glutamate and [3H]kainate binding in hippocampus 24 hours after PCP. Neurosci. Lett. 174, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabara K., Sato M., and Otsuki S. (1984) Reduction of 3H-kainic acid binding in rat cerebral cortex by chronic methamphetamine administration. Biol. Psychiat. 19, 1173–1182.

    PubMed  CAS  Google Scholar 

  • Kerwin R., Patel S., and Meldrum B. (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Kim J.-H. and Vezina P. (1998) Metabotropic glutamate receptors in the rat nucleus accumbens contribute to amphetamine-induced locomotion. J. Pharmacol. Exp. Ther. 284, 317–322.

    PubMed  CAS  Google Scholar 

  • Kuczenski R., Segal D. S., Cho A. K., and Melega W. (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J. Neurosci. 15, 1308–1317.

    PubMed  CAS  Google Scholar 

  • Lin T.-Y., Wang S.-M., and Yin H.-S. (1998) Downregulation and subcellular redistribution of the γ-aminobutyric acidA receptor induced by tunicamycin in cultured brain neurons. J. Cell. Biochem. 70, 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Lu W., Chen H., Xue C.-J., and Wolf M. E. (1997) Repeated amphetamine administration alters the expression of mRNA for AMPA receptor subunits in rat nucleus accumbens and prefrontal cortex. Synapse 26, 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Lu W. and Wolf M. E. (1999) Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. Synapse 32, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Mora F. and Porras A. (1993) Effects of amphetamine on the release of excitatory amino acid neurotransmitters in the basal ganglia of the conscious rat. Can. J. Physiol. Pharmacol. 71, 348–351.

    PubMed  CAS  Google Scholar 

  • Mueller A. L., Kirk K. L., Hoffer B. J., and Dunwiddie T. V. (1982) Noradrenergic responses in rat hippocampus: Electrophysiological actions of direct- and indirect-acting sympathomimetics in the in vitro slice. J. Pharmacol. Exp. Ther. 223, 599–605.

    PubMed  CAS  Google Scholar 

  • Pin J.-P. and Duvoisin R. (1995) Review: Neurotransmitter receptors I. The metabotropic glutamate receptors: Structure and Functions. Neuropharmacology 34, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Pu C. and Vorhees C. V. (1993) Developmental dissociation of methamphetamine-induced depletion of dopaminergic terminals and astrocyte reaction in rat striatum. Dev. Brain Res. 72, 325–328.

    Article  CAS  Google Scholar 

  • Pu C., Broening H. W., and Vorhees C. V. (1996) Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23, 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Reid M. S., Hsu K., Jr., and Berger S. P. (1997) Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: Studies on the involvement of dopamine. Synapse 27, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Ryan L. J., Linder J. C., Martone M. E., and Groves P. M. (1990) Histological and ultrastructural evidence that D-amphetamine causes degeneration in neostriatum and frontal cortex of rats. Brain Res. 518, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Scanziani M., Gähwiler B. H., and Thompson S. M. (1993) Presynaptic inhibition of excitatory synaptic transmission mediated by α adrenergic receptors in area CA3 of the rat hippocampus in vitro. J. Neurosci. 13, 5393–5401.

    PubMed  CAS  Google Scholar 

  • Schröder H., Becker A., and Lössner B. (1993) Glutamate binding to brain membranes is increased in pentylenetetrazole-kindled rats. J. Neurochem. 60, 1007–1011.

    Article  PubMed  Google Scholar 

  • Testa C. M., Standaert D. G., Landwehrmeyer G. B., Penney J. B., Jr., and Young A. B. (1995) Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. J. Comp. Neurol. 354, 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Wahl P., Honoré T., Drejer J., and Schousboe A. (1991) Development of binding sites for excitatory amino acids in cultured cerebral cortex neurons. Int. J. Devl. Neuroscience 9, 287–296.

    Article  CAS  Google Scholar 

  • White F. J. and Kalivas P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Wolf M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Progr. Neurobiol. 54, 679–720.

    Article  CAS  Google Scholar 

  • Yu M.-F. and Yin H.-S. (1998) The Thirteenth Joint Annual Conference of Biomedical Sciences, Abstract, 224.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, MF., Fu, WM. & Yin, HS. Effect of amphetamine on the expression of the metabotropic glutamate receptor 5 mRNA in developing rat brain. J Mol Neurosci 15, 177–188 (2000). https://doi.org/10.1385/JMN:15:3:177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:15:3:177

Index Entries

Navigation