Skip to main content
Log in

Molecular analysis of trkC in the cat visual cortex

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

trkC belongs to the trk family of neurotrophin receptors. Several isoforms of trkC have been cloned to date; a full-length catalytic form containing a tyrosine kinase (TK) domain, three full-length isoforms with amino-acid insertions (14, 25, and 39 amino acids) in the TK domain, and five noncatalytic truncated forms that completely lack the TK domain. These isoforms have been studied in several mammalian species, including the pig, rat, mouse, monkey, and human.

In this article we report the cloning and sequencing of five trkC isoforms isolated from 30-d postnatal cat visual cortex. The first isoform corresponded to the previously reported full-length trkC transcript containing the 14 amino-acid insert. To search for the presence of other inserts, reverse transcription polymerase chain reaction (RT-PCR) was performed on 30-d postnatal cat visual cortex mRNA using primers that flank the insertion site in the TK domain. Both the isoform containing the 14 amino-acid insert and the isoform lacking any insertion were present in abundant amounts, whereas the other two insert containing isoforms (TK25 and TK39) were much less abundant. The fifth isoform discovered corresponds to the previously reported truncated transcript. Overall, there is a high degree of identity (89–98%) and homology (97–99%) between the cat trkC nucleotide and amino-acid sequences among all mammals. The extracellular juxtamembrane domain was found to be highly divergent among all mammals that have been studied to date. This divergent region also included a proline deletion in the cat trkC sequence. This is the first report of the cloning, sequencing, and RT-PCR analysis of trkC in cat visual cortex, a system extensively studied using anatomical and physiological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendoerfer K. L., Cabelli R. J., Escandón E., Kaplan D. R., Nikolics K., and Shatz C. J. (1994) Regulation of neurotrophin receptors during the maturation of the mammalian visual system. J. Neurosci. 14, 1795–1811.

    PubMed  CAS  Google Scholar 

  • Barbacid M., Lamballe F., Pulido D., and Klein R. (1991) The trk family of tyrosine protein kinase receptors. Biochim. Biophys. Acta. 1072, 115–127.

    PubMed  CAS  Google Scholar 

  • Barker P. A., Lomen-Hoerth C., Gensch E. M., Meakin S. O., Glass D. J., and Shooter E. M. (1993) Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J. Biol. Chem. 268, 15,150–15,157.

    CAS  Google Scholar 

  • Bonhoeffer T. (1996) Neurotrophins and activity-dependent development of the neocortex. Curr. Opin. Neurobiol. 6, 119–126.

    Article  Google Scholar 

  • Cellerino A. and Maffei L. (1996) The action of neurotrophins in the development and plasticity of the visual cortex. Prog. Neurobiol. 49, 53–71.

    Google Scholar 

  • Cordon-Cardo C., Tapley P., Jing S., Nanduri V., O’Rourke E., Lamballe F., et al. (1991). The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin 3. Cell 66, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Don R. H., Cox P. T., Wainwright B. J., Baker K., and Mattick J. S. (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 20, 1717–1723.

    Google Scholar 

  • Ghosh A. (1996) Cortical development: with an eye on neurotrophins. Curr. Biol. 6, 130–133.

    Article  Google Scholar 

  • Gorba T. and Wahle P. (1999) Expression of TrkB and TrkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortex in vivo and in organotypic cultures. Eur. J. Neurosci. 11, 1179–1190.

    Article  PubMed  CAS  Google Scholar 

  • Gu Q. (1995) Involvement of nerve growth factor in visual cortex plasticity. Rev. Neurosci. 6, 329–351.

    PubMed  CAS  Google Scholar 

  • Gu Q., Liu Y., and Cynader M. (1996) Immunoreactivity of high-affinity neurotrophin receptors (Trk-A, Trk-B, and Trk-C) in cat visual cortex during post-natal development. Soc. Neurosci. Abstr. 22, 1478.

    Google Scholar 

  • Hanks S. K., Quinn A. M., and Hunter T. (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Hanks S. K. and Quinn A. M. (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200, 38–62.

    Article  PubMed  CAS  Google Scholar 

  • Ip N. Y., Stitt T. N., Tapley P., Klein R., Glass D. J., Fandl J., Greene L. A., Barbacid M., and Yancopoulos G. D. (1993) Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron 10, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Katz L. C. and Shatz C. J. (1996) Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138.

    Article  Google Scholar 

  • Kellogg D. E., Rybalkin I., Chen S., Mukhamedova N., Vlasik T., Siebert P., and Chenchik A. (1994) TaqStart Antibody: Hotstart PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. Biotechniques 16, 1134–1137.

    PubMed  CAS  Google Scholar 

  • Klein R., Parada L. F., Coulier F., and Barbacid M. (1989) trk B, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J. 8, 3701–3709.

    PubMed  CAS  Google Scholar 

  • Klein R., Conway D., Parada L. F., and Barbacid M. (1990) The trk B tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Klein R., Nanduri V., Jing S. Q., Lamballe F., Tapley P., Bryant S., et al. (1991) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66, 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Lamballe F., Klein R., and Barbacid M. (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66, 967–979.

    Article  PubMed  CAS  Google Scholar 

  • Lamballe F., Tapley P., and Barbacid M. (1993) trkC encodes multiple neurotrophin-3 receptors with distincy biological properties and substrate specificities. EMBO J. 12, 3083–3094.

    PubMed  CAS  Google Scholar 

  • Lo D. C. (1995) Neurotrophic factors and synaptic plasticity. Neuron 15, 979–981.

    Article  PubMed  CAS  Google Scholar 

  • Lo D. C. (1998) Instructive roles of neurotrophins in synaptic plasticity. Prog. Brain Res. 117, 65–70.

    PubMed  CAS  Google Scholar 

  • Maisonpierre P. C., Belluscio L., Friedman B., Adlerson R. F., Wiegand S. J., Furth M. E., et al. (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal pattern of expression. Neuron 5, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Zanca D., Hughes S. H., and Barbacid M. (1986) A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743–748.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Zanca D., Oskam R., Mitra G., Copeland T., and Barbacid M. (1989) Molecular and biochemical characterization of the human trk proto-oncogene. Mol. Cell. Biol. 9, 24–33.

    PubMed  CAS  Google Scholar 

  • McAllister A. K., Katz L. C., and Lo D. C. (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778.

    Article  PubMed  CAS  Google Scholar 

  • McAllister A. K., Katz L. C., and Lo D. C. (1999) Neurotrophins and synaptic plasticity. Ann. Rev. Neurosci. 22, 295–318.

    Article  PubMed  CAS  Google Scholar 

  • McGregor L. M., Baylin S. B., Griffin C. A., Hawkins A. L., and Nelkin B. D. (1994) Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant. Genomics 22, 267–272.

    Article  PubMed  CAS  Google Scholar 

  • Meakin S. O. and Shooter E. M. (1992) The nerve growth factor family of receptors. Trends Neurosci. 15, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Menn B., Timsit S., Calothy G., and Lamballe F. (1998) Differential expression of TrkC catalytic and noncatalytic isoforms suggest that they act independently or in association. J. Comp. Neurol. 401, 47–64.

    Article  PubMed  CAS  Google Scholar 

  • Merlio J.-P., Ernfors P., Jaber M., and Persson H. (1992) Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nerbous system. Neuroscience 3, 513–532.

    Article  Google Scholar 

  • Middlemas D. S., Lindberg R. A., and Hunter T. (1991) Trk B, a neural receptor-protein kinase: evidence for a full-length and two truncated receptors. Mol. Cell. Biol. 11, 143–153.

    PubMed  CAS  Google Scholar 

  • Okuno H., Tokuyama W., Li Y. X., Hashimoto T., and Miyashita Y. (1999) Quantitative evaluation of neurotrophin and trk mRNA expression in visual and limbic areas along the occipto-temporphippocampal pathway in adult macaque monkeys. J. Comp. Neurol. 408, 378–398.

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T. and Maffei L. (1996) Plasticity in the developing visual system. Curr. Opin. Neurol. 9, 122–125.

    Article  Google Scholar 

  • Sanger F., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Schneider R. and Schweiger M. (1991). A novel modular mosaic of cell adhesion motifs in the extracellular domains of the neurogenic trk and trk B tyrosine kinase receptors. Oncogene 6, 1807–1811.

    PubMed  CAS  Google Scholar 

  • Shelton D. L., Sutherland J., Gripp J., Camerato T., Armanini M. P., Phillips H. S., et al. (1995) Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J. Neurosci. 15, 477–491.

    PubMed  CAS  Google Scholar 

  • Shieh P. B. and Ghosh A. (1997) Neurotrophins: new roles for a seasoned cast. Curr. Biol. 7, 627–630.

    Article  Google Scholar 

  • Thoenen H. (1995) Neurotrophins and neuronal plasticity. Science 270, 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Tsoulfas P., Soppet D., Escandon E., Tessarollo L., Mendoza-Ramirez J-L., Rosenthal A., et al. (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron 10, 975–990.

    Article  PubMed  CAS  Google Scholar 

  • Tsoulfas P., Stephens R. M., Kaplan D. R., and Parada L. F. (1996) TrkC isoforms with inserts in the kinase doamin show impaired signalling reponses. J. Biol. Chem. 271, 5691–5697.

    Google Scholar 

  • Valenzuela D. M., Maisonpierre P. C., Glass D. J., Rojas E., Nuñez L., Kong Y., et al. (1993) Alternative forms of rat Trk C with different functional capabilities. Neuron 10, 963–974.

    Article  PubMed  CAS  Google Scholar 

  • von Bartheld C. S. (1998) Neurotrophins in the developing and regenerating visual system. Histol. Histopathol. 13(2), 437–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv S. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forooghian, F., Kojic, L., Gu, Q. et al. Molecular analysis of trkC in the cat visual cortex. J Mol Neurosci 14, 39–51 (2000). https://doi.org/10.1385/JMN:14:1-2:039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:14:1-2:039

Index Entries

Navigation