Skip to main content
Log in

The regulation of hippocampal nicotinic acetylcholine receptors (nAChRs) after a protracted treatment with selective or nonselective nAChR agonists

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In rats, 1 mg/kg twice daily for 10 d of nicotine, a nonselective agonist of nicotinic acetylcholine receptors (nAChRs), fails to change α4 and β2 nAChR subunit mRNA but significantly decreased α7 nAChR subunit mRNA and protein expression, which is associated with a 35–40% decrease in the number of 125I-α-Bgtx binding sites in hippocampus. In addition, this schedule of nicotine treatment produced a 40% increase in the number of high- (K D 1 nM), but decreased by 25% the number of low-affinity (K D 30 nM) binding sites for 3H-epibatidine in hippocampus. In contrast, repeated treatment with lobeline (2.7 mg/kg twice daily for 10 d), which selectively binds to high-affinity binding nAChRs, fails to change the expression of high- or low-affinity nAChRs. These data suggest that a simultaneous upregulation of high-affinity nAChRs and downregulation of low-affinity nAChRs is elicited by ligands that can bind to both low- and high-affinity nAChRs, but not by selective agonists of high-affinity nAChRs. One might infer that in hippocampus, high- and low-affinity nAChRs may be located in the same cells. When these two receptor types are stimulated simultaneously by nonselective ligands for high- and low-affinity nAChRs, they interact, bringing about an increase in binding site density of the high-affinity nAChRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

nAChR:

nicotinic acetylcholine receptor

α-Bgtx:

α-bungarotoxin

MLA:

methyllycaconitine

RT:

reverse transcriptase

PCR:

polymerase chain reaction

SDS:

sodium dodecyl sulfate

PAGE:

polyacrylamide gel electrophoresis.

References

  • Albuquerque E. X., Alkondon M., Pereira E., Castro G. N., Schrattenholz A., Barbosa C. T. F., et al. (1996) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J. Pharmacol. Exp. Ther. 280, 1117–1136.

    Google Scholar 

  • Banerjee S. and Abood L. J (1989) Nicotine antagonists: Phosphoinositide turn-over and receptor binding to determine muscarinic properties. Med. Pharmacol. 38(17), 261–267.

    Google Scholar 

  • Benwell M., Balfour D., and Anderson J. (1988) Evidence that tobacco smoking increase the density of (−)-[3H] nicotine binding sites in human brain. J. Neurochem. 50, 1243–1247.

    Article  PubMed  CAS  Google Scholar 

  • Bhat R. V., Turner S. L., Selvaag S. R., Marks M. J., and Collins A. C. (1991) Regulation of brain nicotinic receptors by chronic infusion. J Neurochem. 56(6), 1932–1939.

    Article  PubMed  CAS  Google Scholar 

  • Bickford-Wimer P. C., Nagamoto H., Johnson R., Adler L., Egan M., Rose G. M., et al. (1990) Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol. Psychol. 27, 183–192.

    Article  CAS  Google Scholar 

  • Bradford M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Breese C. R., Adams C., Logel J., Drebing C., Rollins Y., Barnhart M., et al. (1997) Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]-α-Bungarotoxin binding in human postmortem brain. J. Comp. Neurol. Oct 27; 387(3), 385–398.

    Article  PubMed  CAS  Google Scholar 

  • Brioni J. D., Decker M. W., Sullivan J. P. and Arneric S. P. (1997) The pharmacology of (−)-nicotine and novel cholinergic channel modulators. Adv. Pharmacol. 37, 153–211.

    Article  PubMed  CAS  Google Scholar 

  • Broussolle E. P., Wong D. F., Fanelli R. J., and London E. D. (1989) In vivo binding of 3H-nicotine in the mouse brain. Life Sci. 44, 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  • Changeux J. P. (1989) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel, in: Fidia Research Foundation Award Lectures, vol. 4, Raven, NY, pp. 21–168.

  • Cohen J. B., Weber M., and Changeux J. P. (1974) Effects of local anesthetics and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein in Torpedo marmorata. Mol. Pharmacol. 10, 904–932.

    CAS  Google Scholar 

  • Damaj M. I., Patrick G. S., Creasy K. R., and Martin B. R. (1997) Pharmacology of Lobeline, a nicotinic receptor ligand. J. Pharmacol. Exp. Ther. 282, 410–419.

    PubMed  CAS  Google Scholar 

  • Decker M. W., Majchzark M. J., and Arneric S. P. (1993) Effects of Lobeline, a nicotinic receptor agonist, on learning and memory. Pharmacol. Biochem. Behav. 45, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Decker M. W., Brioni J. D., Bannon A. W., and Arneric S. P. (1995) Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implication for CNS therapeutics. Life Sci. 56(8), 545–570.

    Article  PubMed  CAS  Google Scholar 

  • Freedman R., Hall M., Adler L. E., and Leonard S. (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol. Psychol. 38 22–33.

    Article  CAS  Google Scholar 

  • Gallo V., Upson L. M., Hayes W. P., Vyklicky L. Jr., Winters C., and Buonanno A. (1992) Molecular cloning and developmental analyses of a new glutamate receptor subunit isoform in cerebellum. J. Neurosci. 12, 1010–1023.

    PubMed  CAS  Google Scholar 

  • Geertsen S., Afar R., Trifaro J. M., Quik M. (1988) Regulation of α-Bungarotoxin sites in chromaffin cells in culture by nicotinic receptor ligands, K+ and cAMP. Mol. Pharmacol. 34, 549–556.

    PubMed  CAS  Google Scholar 

  • Gerzanich V., Peng X., Wang F., Wells G., Anand R., Fletcher S., et al. (1995) Comparative pharmacology of epibatidine: A potent agonist of neuronal nicotine acetylcholine receptors. Mol. Pharmacol. 48, 774–782.

    PubMed  CAS  Google Scholar 

  • Goldberg S. R., Risner M. E., Stolerman I. P., Reavill C., and Garcha H. S. (1989) Nicotinic and some related compounds: effects on schedule-controlled behavior and discriminative properties in rats. Psychopharmacology 97, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan M., Buisson B., Touma E., Giordano T., Campbell J. E., Hu I. C., et al. (1995) Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor. Eur. J. Pharmacol. Mol. Pharmacol. 290, 237–246.

    Article  CAS  Google Scholar 

  • Grayson D. R., Bovolin P., and Santi M. R. (1993) Absolute quantitation of γ-aminobutyric acidA receptor subunit messenger RNA by competitive polymerase chain reaction. Methods Neurosci. 12, 191–208.

    CAS  Google Scholar 

  • Hollman M. and Heinemann S. (1994) Cloned glutamate receptors. Ann. Rev. Neurosci. 17 31–108.

    Article  Google Scholar 

  • Lecca D., Shim I., Costa E., and Javaid J. I. (1999) Striatal application of nicotine, but not lobeline attenuates dopamine release. Neuropharmacology (in press).

  • Lendvai B., Sershen H., Lajtha A., Santha E., Baranyi M., and Vizi E. S. (1996) Differential mechanisms involved in the effect of nicotinic agonists DMMP and Lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology 35(12), 1769–1777.

    Article  PubMed  CAS  Google Scholar 

  • Leonard S., Adams C., Breese C. R., Adler L. E., Bickford P., Byerley W., et al. (1996) Nicotinic receptor function in schizophrenia. Schizophrenia Bull. 22, 431–445.

    CAS  Google Scholar 

  • Lindstrom J. (1996) Neuronal nicotinic acetylcholine receptors. Ion Channels 4, 377–449.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Burch J. B., and Collins A. C. (1983) Effects of chronic nicotine infusion on tolerance development and nicotine receptors. J. Pharmacol. Exp. Ther. 226, 817–825.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Stitzel J. A., and Collins A. C. (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J. Pharmacol. Exp. Ther. 235(3), 619–628.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Stitzel J. A., Romm E., Wehner J. M., and Collins A. C. (1986) Nicotinic binding sites in rat and mouse brain. Comparison of acetylcholine, nicotine and alpha-Bungarotoxin. Mol. Pharmacol. 30, 427–436.

    PubMed  CAS  Google Scholar 

  • Marks M. J., Pauly J., Gross D., Deneris E., Hermans-Borgmeyer I., Heinemann S., et al. (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784.

    PubMed  CAS  Google Scholar 

  • McLane K. E., Wu X., Lindstrom J. M., and Conti-Tronconi B. M. (1992) Epitope mapping of polyclonal and monoclonal antibodies against two α-bungarotoxin binding α-subunits from neuronal nicotinic receptors. J. Neuroimmunol. 38, 115–128.

    Article  PubMed  CAS  Google Scholar 

  • McPherson G. I. (1987) Ligand (release 2.0), Elsevier Biosoft, Cambridge.

  • Messing A. (1982) Cholinergic agonist-induced down-regulation of neuronal (−)bungarotoxin. Brain Res. 232, 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F., Wroblewski J. T., Novelli A., Alho H., Guidotti A., and Costa E. (1986) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6, 1905–1911.

    PubMed  CAS  Google Scholar 

  • Orr-Utreger A., Goldner F. M., Saeki M., Lorenzo I., Golberg L., De Biasi M., et al. (1997) Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack α-bungarotoxin binding sites and hippocampal fast nicotine currents. J. Neurosci. 17, 9165–9171.

    Google Scholar 

  • Peng X., Gerzanich V., Anand R., Wang F., and Lindstrom J. (1997) Chronic nicotine treatment upregulates α3 and α7 acetylcholine receptor subtypes expressed by human neuroblastoma cell line SH-SY5Y. Mol. Pharmacol. 51, 776–784.

    PubMed  CAS  Google Scholar 

  • Perry D. C., Davila-Garca M. I., Musachio J. L., and Kellar K. J. (1997) Epibatidine analogs label subpopulation of neuronal nicotinic receptors. Soc. Neurosci. Abstracts 1, 154.12.

    Google Scholar 

  • Rao T. S., Correa L. D., and Lloyd G. K. (1997) Effects of lobeline and DMPP on NMDA-evoked acetylcholine release in vitro: Evidence for lack of involvement of classical neuronal nicotinic acetylcholine receptors. Neuropharmacology 36(1), 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Reavill C., Jenner P., Kumar R., and Stolerman I. P. (1988) High affinity binding of [3H](−)-nicotine to rat brain membranes and its inhibition by analogs of nicotine. Neuropharmacologhy 27, 235–241.

    Article  CAS  Google Scholar 

  • Rollins Y. D., Stevens K. E., Harris K. R., Hall M. E., Rose G. M., and Leornard S. (1993) Reduction in auditory gating following intracerebroventricular application of α-bungaratoxin binding site ligands and α7 antisense oligonucleotide. Soc. Neurosci. Abstracts 19, 837.

    Google Scholar 

  • Rowell P. P. and Li M. (1997) Dose-response relationship for nicotine-induced up-regulation of rat brain nicotine receptors. J. Neurochem. 68, 1982–1989.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz R. and Kellar K. (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220, 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Teng L., Crooks P. A., Sonsalla P. K., and Dwoskin L. P. (1997) Lobeline and nicotine evoke [3H] overflow from rat striatal slices preloaded with [3H] dopamine: Differential inhibition of synaptosomal and vesicular [3H] dopamine uptake. J. Pharmacol. Exp. Ther. 280, 1432–1444.

    PubMed  CAS  Google Scholar 

  • Toro E. D., Juiz J. M., Peng X., Lindstrom J., and Criado M. (1994) Immunocytochemical localization of the α7 subunit of nicotinic acetylcholine receptor in rat central nervous system. J Comp. Neurol. 349, 325–342.

    Article  Google Scholar 

  • Ulrich Y. M., Hargreaves K. M., and Flores C. M. (1997) A comparison of multiple injection versus continuous infusion of nicotine for producing upregulation of neuronal [3H]-epibatidine binding sites. Neuropharmacology 36(8), 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  • Warpman U., Friberg L., Gillespie A., Hellstrom-Lindahl E., Zhang X., and Nordberg A. (1998) Regulation of nicotinic receptor subtypes following chronic nicotinic agonist exposure in M10 and Sh-SY5Y neuroblastoma cells. J. Neurochem. 70(5), 2028–2037.

    Article  PubMed  CAS  Google Scholar 

  • Weber M., David-Pfeuty M. T., and Changeux J. P. (1975) Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedor mamorata. Proc. Natl. Acad. Sci. USA 72, 3443–3447.

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S. (1990) The paradox of nicotine acetylcholine receptor up-regulation by nicotine. Trends Pharmacol. Sci. 11, 216–219.

    Article  PubMed  CAS  Google Scholar 

  • Zoti M., Lena C., Picciotto M. R., and Changeux J. P. (1998) Identification of four classes of brain nicotinic receptors using β2-mutant mice. J. Neurosci. 18, 4461–4472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auta, J., Longone, P., Guidotti, A. et al. The regulation of hippocampal nicotinic acetylcholine receptors (nAChRs) after a protracted treatment with selective or nonselective nAChR agonists. J Mol Neurosci 13, 31–45 (1999). https://doi.org/10.1385/JMN:13:1-2:31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:31

Index Entries

Navigation