Skip to main content
Log in

Immunolocalization of tenascin-C in human type II fiber atrophy

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Tenascin-C is a multifunctional extracellular matrix glycoprotein with stimulatory and antiadhesive or inhibitory properties for axon growth. Its location and discontinous expression are restricted in innervated muscle tissues. Tenascin-C accumulated interstitially among human denervated muscle fibers and close to normal-sized fibers. To expand our knowledge of the expression of tenascin-C in human neuromuscular disorders, we investigated immunhistologically 20 human muscle specimens with type II myofiber atrophy of children and adults. Tenascin-C immunoreactivity in adult type II atrophy was frequent, and accumulation in children was sparse and weak. In both groups, tenascin-C immunoreactivity was found:

  1. 1.

    Interstitially around normal-sized type II muscle fibers.

  2. 2.

    Around atrophic type II muscle fibers.

  3. 3.

    Around small-caliber myofibers with centrally located nuclei.

These results indicate that tenascin-Cimmunoreactivity: (1) is detectable around early denervated and reinnervated muscle fibers and, therefore, (2) may reflect in part the molecularly ongoing process of denervation and reinnervation in human type II fiber atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banker B. Q. and Engel A. G. (1994) Basic reactions of muscle, in Myology, 2nd ed., vol 1. (Engle A. G. and Franzini-Armstrong C., eds.) McGraw-Hill, New York, pp. 832–856.

    Google Scholar 

  • Burch G. H., Gong Y., Liu W., Dettmann R. W., Curry C. J., Smith L., et al. (1997) Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nature Genet 17, 104–108.

    Article  PubMed  CAS  Google Scholar 

  • Carnemolla B., Leprini A., Borsi L., Querze G., Urbini S., and Zardi L. (1996) Human tenascin-R: complete primary structure, pre-mRNA alternative splicing and gene localization on chromosome 1q23–q24. J. Biol. Chem. 271, 8157–8160.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter S. and Karpati G. (1984) Major general pathological reactions and their consequences on skeletal muscle cells, in Pathology of Skeletal Muscle (Carpenter S. and Karpati G., eds.) Churchill Livingstone, New York, pp. 101–112.

    Google Scholar 

  • Chiquet-Ehrismann R. (1995) Inhibition of cell adhesion by anti-adhesive molecules. Curr. Opinion Cell Biol. 7, 715–719.

    Article  PubMed  CAS  Google Scholar 

  • Connor E. A., Qin K., Yankelev H., and DeStefano D. (1994) Synaptic activity and connective tissue remodeling in denervated frog muscle. J. Cell Biol. 127, 1435–1445.

    Article  PubMed  CAS  Google Scholar 

  • Daniloff J. K., Crossin K. L., Pincon-Raymond M., Murawsky M., Rieger F., and Edelman G. M. (1989) Expression of cytotactin in the normal and regenerating neuromuscular system. J. Cell Biol. 108, 625–635.

    Article  PubMed  CAS  Google Scholar 

  • Dodd J. and Schuchardt A. (1995) Axon guidance: A compelling case for repelling growth cones. Cell 81, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Erickson H. P. (1993) Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr. Opinion Cell Biol. 5, 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Faissner A. (1997) The tenascin gene family in axon growth and guidance. Cell Tissue Res. 290, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Faissner A. and Kruse J. (1990) J1/tenascin is a repulsive substrate for central nervous system neurons. Neuron 5, 627–637.

    Article  PubMed  CAS  Google Scholar 

  • Faissner A., Götz B., Joester A., Wigger F., Scholze A., and Schütte K. (1996) Tenascin-C glycoproteins in neural pattern formation and regeneration. Semin. Neurosci. 8, 347–356.

    Article  CAS  Google Scholar 

  • Fischer D., Brown-Lüdi M., Schulthess T., and Chiquet-Ehismann R. (1997) Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J. Cell Sci. 110, 1513–1522.

    PubMed  CAS  Google Scholar 

  • Gatchalian C. L., Schachner M., and Sanes J. R. (1989) Fibroblasts that proliferate near denervated synaptic sites in skeletal muscle synthesize the adhesive molecules tenascin (J1), N-CAM, fibronectin, and a heparan sulfate proteoglycan. J. Cell Biol. 108, 1873–1890.

    Article  PubMed  CAS  Google Scholar 

  • Gulcher J. R., Alexakos M. J., Le Beau M. M., Lemons R. S., and Stefansson K. (1990) Chromosomal localization of the human hexabrachion (tenascin) gene and evidence for recent reduplication within the gene. Genomics 6, 616–622.

    Article  PubMed  CAS  Google Scholar 

  • Gullberg D., Velling T., Sjörberg G., Salmivirta K., Gaggero B., Tiger C-F., et al. (1997) Tenascin-C expression correlates with macrophage invasion in Duchenne muscular dystrophy and myositis. Neuromuscl. Dis. 7, 39–54.

    Article  CAS  Google Scholar 

  • Hagios C., Koch M., Spring J., Chiquet M., and Chiquet-Ehrismann R. (1996) Tenascin-Y: a protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue. J. Cell Biol. 134, 1499–1512.

    Article  PubMed  CAS  Google Scholar 

  • Irintechv A., Salvini T. F., Faissner A., and Wernig A. (1993) Differential expression of Tenascin after denervation, damage or paralysis of mouse soleus muscle. J. Neurocytol. 22, 955–965.

    Article  Google Scholar 

  • Itoh N. and Nagata S. (1993) A novel protein domain required for apoptosis. J. Biol. Chem. 268, 10,932–10,937.

    CAS  Google Scholar 

  • Kirchner T., Tsartos S., Hoppe F., Schalke B., Wekerle H., and Müller-Hermelink H. K. (1988) Pathogenesis of myasthenia gravis. AJP 30, 268–280.

    Google Scholar 

  • Langenfeld-Oster B., Faissner A., Irintchev A., and Wernig A. (1994) Polyclonal antibodies against NCAM and tenascin delay endplate reinnervation. J. Neurocytol. 23, 591–604.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K., Saga Y., Ikemura T., Sakakura T., and Chiquet-Ehrismann R. (1994) The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J. Cell Biol. 125, 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Mege R. M., Nicolet M., Pincoon-Raymond M., Murawsky M., and Rieger F. (1992) Cytotactin is involved in synaptogenesis during regeneration of the frog neuromuscular system. Dev. Biol. 149, 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Mendell J. R. and Engel W. K. (1971) The fine structure of type II muscle fiber atrophy. Neurology 21, 358–365.

    PubMed  CAS  Google Scholar 

  • Moses H. L., Yang E. Y., and Pietenpol J. A. (1990) TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63, 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Nies D. E., Hemesath T. J., Kim J-H., Gulcher J. R., and Stefansson K. (1991) The complete cDNA sequence of human hexabrachion (tenascin): a multidomain protein containing unique epidermal growth factor repeats. J. Biol. Chem. 266, 2818–2823.

    PubMed  CAS  Google Scholar 

  • Pearson C. A., Pearson D., Shibahara S., Hofsteenge J., and Chiquet-Ehrismann R. (1988) Tenascin: cDNA cloning and induction by TGF-β. EMBO J. 7, 2977–2981.

    PubMed  CAS  Google Scholar 

  • Pedrosa-Domellöf F., Vitanen I., and Thornell L-E. (1995) Tenascin is present in human muscle spindles and neuromuscular junctions. Neurosci. Lett. 198, 173–176.

    Article  PubMed  Google Scholar 

  • Sanes J. R., Schachner M., and Covault J. (1986) Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, Uvomorulin, Laminin, Fibronectin, and a Heparan Sulfate Proteoglycan) in embryonic, adult, and denervated skeletal muscle. J. Cell Biol. 102, 420–431.

    Article  PubMed  CAS  Google Scholar 

  • Schoser B. G. H. and Goebel H. H. (1996) Tenascin in denervated human muscle. J. Neurol. Sci. 139, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Schoser B. G. H., Löck G., and Blottner D. (1997) Partial loss of NADPH-diaphorase/nitric oxide synthase-complex in amyotrophic lateral sclerosis and human type II myofiber atrophy. Neurosci. Lett. 231, 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Settles D. L., Cihak R. A., and Erickson H. P. (1996) Tenascin-C expression in dystrophin-related muscular dystrophy. Muscle and Nerve 19, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Telerman-Toppet N. and Coers C. (1975) Motor innervation in type II atrophy of skeletal muscle. J. Neurol. Sci. 25, 449–461.

    Article  Google Scholar 

  • Yamada H., Nakagawa M., Higuchi I., Ohkubo R., and Osame M. (1995) Type II muscle fibers are stained by anti-Fas antibody. J. Neurol. Sci. 134, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Yonehara S., Ishii A., and Yonehara M. (1989) A cell-killing monoclonal antibody (Anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoser, B.G.H., Faissner, A. & Goebel, H.H. Immunolocalization of tenascin-C in human type II fiber atrophy. J Mol Neurosci 13, 167–175 (1999). https://doi.org/10.1385/JMN:13:1-2:167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:167

Index Entries

Navigation