Skip to main content
Log in

Activity-dependent interaction of the intracellular domain of rat TrkA with intermediate filament proteins, the β-6 proteasomal subunit, Ras-GRF1, and the p162 subunit of eIF3

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Many responses to nerve growth factor (NGF) are regulated through the receptor tyrosine kinase trkA. To understand more fully the functions of trkA in NGF responsive cells, we have expressed the intracellular domain of rat trkA as a fusion protein with the yeast gal4 transcription factor, and used the fusion protein to probe rat and mouse cDNA libraries by the yeast two-hybrid system. We have identified a direct interaction between the intracellular domain of trkA and two members of the intermediate filament (IF) family of proteins, the guanine-nucleotide exchange protein Ras-GRF1, the p162 subunit of eIF3, and the β-6 proteasome subunit. The interactions are dependent on an active trkA kinase, and RasGRF1, the β-6 proteasomal subunit, and peripherin are directly phosphorylated by trkA. The interaction with trkA is not affected by mutations at either Tyr499 or Tyr794, the two major phosphotyrosine residues essential to the activation and receptor binding of Shc, FRS-2/SNT, and phospholipase Cγ-1, and it is highly specific in vitro for trkA, with little or no binding observed with trkB and/or trkC. The results show that trkA may play a regulatory role in a variety of cellular functions in addition to neuritogenesis, including regulated protein degradation and transcriptional activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelastro J. M., Ho C.-L., Frappier T., Liem R. K. H., and Greene L. A. (1998) Peripherin is tyrosine phosphorylated at its carboxyl-terminal tyrosine. J. Neurochem. 70, 540–549.

    Article  PubMed  CAS  Google Scholar 

  • Asano K., Kinzy T. G., Merrick W. C., and Hershey J. W. B. (1997) Conservation and diversity of eukaryotic translation initiation factor eIF3. J. Biol. Chem. 272, 1101–1109.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W., Walz, J., Zühl, F., and Seemüller, E. (1998) The Proteasome: paradigm of a self-comartmentalizing protease. Cell 92, 367–380.

    Article  PubMed  CAS  Google Scholar 

  • Bernd P. and Greene L. A. (1984) Association of 125I-nerve growth factor with PC12 pheochromocytoma cells. Evidence for internalization via high-affinity receptors only and for long-term regulation by nerve growth factor of both high- and low-affinity receptors. J. Biol. Chem. 259, 15,509–15,516.

    CAS  Google Scholar 

  • Bhattacharyya A., Watson F. L., Bradlee T. A., Pomeroy S. L., Stiles C. D., et al. (1997) Trk receptors function as rapid retrograde signal carriers in the adult nervous system. J. Neurosci. 17, 7007–7016.

    PubMed  CAS  Google Scholar 

  • Boriack-Sjodin P. A., Margarit S. M., Bar-Sagi D., and Kuriyan J. (1998) The structural basis of the activation of ras by sos. Nature 394, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Campenot R. B. (1977) Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA 74, 4516–4519.

    Article  PubMed  CAS  Google Scholar 

  • Cerione R. A. and Zheng Y. (1996) The Dbl family of oncogenes. Curr. Opinion Cell Biol. 8, 216–222.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. O. and Chiu F.-C. (1997) The 66-kDa neurofilament protein (NF-66): sequence analysis and evolution. Neurochem. Res. 21, 449–455.

    Article  Google Scholar 

  • Chao M. V. and Hempstead B. L. (1995) p75 and Trk: a two receptor system. Trends Neurosci. 18, 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Ching G. Y. and Liem R. K. H. (1991) Structure of the gene for the neuronal intermadiate filament protein α-internexin and functional analysis of its promoter. J. Biol. Chem. 266, 19,459–19,468.

    CAS  Google Scholar 

  • Ciechanover A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Drexler H. C. (1997) Activation of the cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci. USA 94, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers M. D., Kaplan D. R., Price D. L., and Koliatsos V. E. (1995) NGF-stimulated retrograde transport of trkA in the mammalian nervous system. J. Cell Biol. 130, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Eveleth D. D. and Bradshaw R. A. (1988) Internalization and cycling of nerve growth factor in PC12 cells: Interconversion of type II (fast) and type I (slow) nerve growth factor receptors. Neuron 1, 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Fam N. P., Fan W.-T., Wang Z., Zhang L.-J., Chen H., and Moran M. F. (1997) Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol. Cell. Biol. 17, 1396–1406.

    PubMed  CAS  Google Scholar 

  • Feig L. A. (1994) Guanine nucleotide exchange factors: a family of positive regulators for ras and related GTPases. Curr. Opinion Cell Biol. 6, 204–211.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G. and Schreiber S. L. (1998) Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273, 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G., Standaert R. F., Reichard G. A., Corey E. J., and Schreiber S. L. (1994) A B-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line. Proc. Natl. Acad. Sci. USA 91, 3358–3362.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G., Standaert R. F., Lane W. S., Choi S., Cory E. J., and Schreiber, S. L. (1995) Inhibition of proteasome activities and subunit-specific aminoterminal threonine modification by lactacystin. Science 268, 726–728.

    Article  PubMed  CAS  Google Scholar 

  • Fields S. and Song O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245, 246.

    Article  PubMed  CAS  Google Scholar 

  • Fliegner K. H., Ching G. Y., and Liem R. K. H. (1990) The predicted amino acid sequence of α-internexin is that of a novel neuronal intermediate filament protein. EMBO J. 9, 749–755.

    PubMed  CAS  Google Scholar 

  • Gietz D., Jean A. S., Woods R. A., and Schiestl R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425–1430.

    Article  PubMed  CAS  Google Scholar 

  • Gotoh T., Hattori S., Nakamura S., Kitayama H., Noda M., Takai Y., et al. (1995) Identification of rap1 as a target for the crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15, 6746–6753.

    PubMed  CAS  Google Scholar 

  • Gotoh T., Niino Y., Tokuda M., Hatase O., Nakamura S., Matsuda M., et al. (1997) Activation of R-ras by guanine nucleotide-releasing factor. J. Biol. Chem. 272, 18,602–18,607.

    Article  CAS  Google Scholar 

  • Grimes M. L., Zhou J., Beattie E. C., Yuen E. C., Hall D. E., Valletta J. S., et al. (1996) Endocytosis of activated trkA: evidence that nerve growth afctor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964.

    PubMed  CAS  Google Scholar 

  • Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Hanks S. K., Quinn A. M., and Hunter, T. (1988) The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Hendry I. and Bonyhady R. (1980) Retrogradely transported nerve growth factor increases ornithine decarboxylase activity in rat superior cervical ganglia. Brain Res. 200, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Heumann R., Schwab M., and Theonen H. (1980) A second messenger required for nerve-growth factor biological activity? Nature 292, 838–840.

    Article  Google Scholar 

  • Heumann R., Schwab M., Merkl R., and Thoenen H. (1984) Nerve growth factor-mediated induction of choline acetyltansferase in PC12 cells: evaluation of the site of action of nerve growth factor and the involvment of lysosomal degradation products of nerve growth factor. J. Neurosci. 4, 3039–3050.

    PubMed  CAS  Google Scholar 

  • Hochstrasser M. (1996) Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.

    Article  PubMed  CAS  Google Scholar 

  • Hosang M. and Shooter E. M. (1987) The internalization of nerve growth factor by high-affinity receptors of pheochromocytoma PC12 cells. EMBO J. 6, 1197–1202.

    PubMed  CAS  Google Scholar 

  • James P., Halladay J., and Craig E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.

    PubMed  CAS  Google Scholar 

  • Jentsch S. and Schlenker S. (1995) Selective protein degradation: A journey’s end within the proteasome. Cell 82, 881–884.

    Article  PubMed  CAS  Google Scholar 

  • Jing S., Tapley P., and Barbacid M. (1992) Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron 9, 1067–1079.

    Article  PubMed  CAS  Google Scholar 

  • Johanson S., Crouch M., and Hendry I. (1995) Retrograde axonal transport of signal transduction proteins in rat sciatic nerve. Brain Res. 690, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Johnson E. M., Taniuchi M., Clark M., Springer J., Koh S., Tayrien, M., et al. (1987) Demonstration of the retrograde transport of nerve growth factor receptor in the peripheral and central nervous system. J. Neurosci. 7, 923–929.

    PubMed  CAS  Google Scholar 

  • Johnson K. R., Merrick W. C., Zoll W. L., and Zhu Y. (1997) Identification of cDNA clones for the large subunit of eukaryotic translation initiation factor 3: Comparison of homologues from human, Nicotiana tabacum, Caenorhabditis elegans and saccharomyces cerivisiae. J. Biol. Chem. 272, 7106–7113.

    Article  PubMed  CAS  Google Scholar 

  • Kanner S. B., Reynolds A. B., Vines R. R., and Parsons J. T. (1990) Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc. Natl. Acad. Sci. USA 87, 3328–3332.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan D. R. and Miller F. D. (1997) Signal transduction by the neurotrophin receptors. Curr. Opinion Cell Biol. 9, 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan M. P., Chin S. S. M., Fliegner K. H., and Liem R. K. H. (1990) α-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J. Neurosci. 10, 2735–2748.

    PubMed  CAS  Google Scholar 

  • Kouhara H., Hadari Y. R., Spivak-Kroizman T., Schilling J., Bar-Sagi D., Lax I., et al. (1997) A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693–702.

    Article  PubMed  CAS  Google Scholar 

  • Kozma R., Sarner S., Ahmad S., and Lim L. (1997) Rho family GTPases and neuronal growth cone remodelling: Relationship between increased complexity introduced by Cdc42Hs, Rac1 and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211.

    PubMed  CAS  Google Scholar 

  • Lemmon M., Ferguson K., and Schlessinger J. (1996) PH domains: diverse sequences with acommon fold recruit signaling molecules to the cell surface. Cell 85, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Leonard D. G. B., Gorham J. D., Cole P., Greene L. A., and Ziff E. B. (1988) A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. J. Cell Biol. 106, 181–193.

    Article  PubMed  CAS  Google Scholar 

  • Longo F. M., Holtzman D. M., Grimes M. L., and Mobley W. C. (1993) Nerve growth factor: actions in the peripheral and central nervous systems, in Neurotrophic Factors (Fallon J. and Loughlin S., eds.), Academic, New York, pp. 209–256.

    Google Scholar 

  • Lopes U. G., Erhardt P., Yao R., and Cooper G. M. (1997) p53-dependent induction of apoptosis by proteasome inhibitors. J. Biol. Chem. 272, 12,893–12,896.

    Article  CAS  Google Scholar 

  • MacDonald J. I. S. and Meakin S. O. (1996) Deletions in the extracellular domain of rat TrkA lead to an altered differentiative phenotype in neurotrophin responsive cells. Mol. Cell. Neurosci. 7, 371–390.

    Article  PubMed  CAS  Google Scholar 

  • Meakin S. O., Gryz E. A., and MacDonald J. I. S. (1997) A kinase insert isoform of rat TrkA supports nerve growth factor-dependent cell survival but not neurite outgrowth. J. Neurochem. 69, 954–967.

    Article  PubMed  CAS  Google Scholar 

  • Meakin S. O. and MacDonald J. I. S. (1998) A novel juxtamembrane deletion in rat TrkA blocks differentiative but not mitogenic cell signalling in response to nerve growth factor. J. Neurochem. 71, 1875–1888.

    Article  PubMed  CAS  Google Scholar 

  • Meakin S. O., MacDonald J. I. S., Gryz E. A., Kubu C. J., and Verdi J. M. (1999) The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor, TrkA: A model for discriminating proliferation and differentiation. J. Biol. Chem. 274, 9861–9870.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima S. and Nagata S. (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322.

    Article  PubMed  CAS  Google Scholar 

  • Nimnual A. S., Yatsula B. A., and Bar-Sagi D. (1998) Coupling of ras and rac guanosine triphosphatases through the ras exchanger sos. Science 279, 560–563.

    Article  PubMed  CAS  Google Scholar 

  • Obermeier A., Lammers R., Wiesmüller K.-H., Jung G., Schlessinger J., and Ullrich A. (1993) Identification of Trk binding sites for SHC and phosphatidylinositol 3′ kinase and formation of a multimeric signaling complex. J. Biol. Chem. 268, 22,963–22,966.

    CAS  Google Scholar 

  • Parysek, L. M. and Goldman, R. D. (1988) Distribution of a novel 57 kDA intermediate filament (IF) protein in the nervour system. J. Neurosci. 8, 555–563.

    PubMed  CAS  Google Scholar 

  • Qian X., Riccio A., Zhang Y., and Ginty D. D. (1998) Identification and characterization of novel substrates of trk receptors in developing neurons. Neuron 21, 1017–1029.

    Article  PubMed  CAS  Google Scholar 

  • Quilliam L. A., Khosravi-Far R., Huff S. M., and Der C. J. (1995) Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17, 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Riccio A., Pierchala B. A., Ciarallo C. L., and Ginty D. D. (1997) An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100.

    Article  PubMed  CAS  Google Scholar 

  • Sadoul R., Fernandez P.-A., Quiquerez A.-L., Martinou I., Maki M., Schroter M., et al. (1996) Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J. 15, 3845–3852.

    PubMed  CAS  Google Scholar 

  • Shou C., Wurmser A., Ling K., Barbacid M., and Feig L. A. (1995) Differential response of the Ras exchange factor, Ras-GRF to tyrosine kinase and G-protein mediated signals. Oncogene 10, 1887–1893.

    PubMed  CAS  Google Scholar 

  • Steinert P. M. and Liem R. K. H. (1990) Intermediate filament dynamics. Cell 60, 521–523.

    Article  PubMed  CAS  Google Scholar 

  • Stephens R. M., Loeb D. M., Copeland T. D., Pawson T., Greene L. A., and Kaplan D. R. (1994) Trk receptors use redundant signal transduction pathways involving SHC and PLC-γ1 to mediate NGF responses. Neuron 12, 691–705.

    Article  PubMed  CAS  Google Scholar 

  • Tamura T., Tanaka K., Kumatori A., Yamada F., Tsurumi C., Fujiwara T., et al. (1990) cDNA cloning and sequencing of component C5 of proteasomes from rat hepatoma cells. FEBS Letts. 264, 91–94.

    Article  CAS  Google Scholar 

  • Tanaka S., Morishita T., Hashimoto Y., Hattori S., Nakamura S., Shibuya M., et al. (1994) C3G, a guanine nucleotide-relaesing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2 / ASH proteins. Proc. Natl. Acad. Sci. USA 91, 3443–3447.

    Article  PubMed  CAS  Google Scholar 

  • Troy C. M., Greene L. A., and Shelanski M. L. (1992) Neurite outgrowth in peripherin-depleted PC12 cells. J. Cell Biol. 117, 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  • Vale R. D., Ignatius M. J., and Shooter E. M. (1985) Association of nerve growth factor receptors with the Triton X-100 cytoskeleton of PC12 cells. J. Neurosci. 5, 2762–2770.

    PubMed  CAS  Google Scholar 

  • Wolf D. E., McKinnon C. A., Daou M.-C., Stephens R. M., Kaplan D. R., and Ross A. H. (1995) Interaction with TrkA immobilizes gp75 in the high affinity nerve growth factor complex. J. Biol. Chem. 270, 2133–2138.

    Article  PubMed  CAS  Google Scholar 

  • York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McClecksy E. W., et al. (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, J.I.S., Verdi, J.M. & Meakin, S.O. Activity-dependent interaction of the intracellular domain of rat TrkA with intermediate filament proteins, the β-6 proteasomal subunit, Ras-GRF1, and the p162 subunit of eIF3. J Mol Neurosci 13, 141–158 (1999). https://doi.org/10.1385/JMN:13:1-2:141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:141

Index Entries

Navigation