Skip to main content
Log in

Increased expression of prion protein is associated with changes in dopamine metabolism and MAO activity in PC12 cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Prion diseases of humans and animals occur following infection with infectious agents containing PrPSc or in situations in which there is a mutation of the prior protein (PrP) gene. The cellular prion protein (PrPC) is a sialoglycoprotein that is expressed predominantly in neurons. PrPC is converted into a pathogenic form of PrP (PrPSc), which is distinguishable from PrPC by its relative resistance to protease digestion. A number of postulates have been advanced for the function of normal PrP (PrPC), but this issue has not been resolved. To investigate the function(s) of PrPC, we established clonal PC12 cell lines, which have elevated PrPC expression. The results show that there were alterations in dopamine metabolism and in monoamine oxidase (MAO) activity in transfected PC12 cells that overexpress PrPC. There was an increase in concentration of DOPAC, a metabolite of dopamine, and in MAO activity in cells overexpressing PrPC. MAO is involved in oxidative degradation of dopamine (DA). Our data suggest that PrPC plays a role in DA metabolism by regulating MAO activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen J. K., Frim D. M., Isacson O., Beal M. F., and Breakefield X. O. (1994) Elevation of neuronal MAO-B activity in a transgenic mouse model does not increase sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Brain Res. 656, 108–114.

    Article  PubMed  CAS  Google Scholar 

  • Bassant M. H., Fage D., Dedek J., Court L., and Scatton B. (1984) Monoamine abnormalities in the brain of scrapie-infected rats. Brain Res. 308, 182–185.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. R. and Besinger A. (1998) Prion protein expression and superoxide dismutase activity. Biochem. J. 334, 423–429.

    PubMed  CAS  Google Scholar 

  • Büeler H., Fischer M., Lang Y. Bluethmann H., Lipp H. P., DeArmond S. J., et al. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582.

    Article  PubMed  Google Scholar 

  • Collinge J., Whittington M. A., Sidle K. C. L., Smith C. J., Palmer M. S., Clarke A. R., et al. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297.

    Article  PubMed  CAS  Google Scholar 

  • Cooper J. R., Bloom F. E., and Roth R. H. (1996) Dopamine, in The Biochemical Basis of Neuropharmacology. Oxford University Press, New York, pp. 293–351.

    Google Scholar 

  • Greene L. A. and Rein G. (1977) Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Res. 129, 247–263.

    Article  PubMed  CAS  Google Scholar 

  • Kascsak R. J., Rubenstein R., Merz P.A., Tonna-DeMasi M., Fersko R., Carp R. I., et al. (1987) Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. J. Virol. 61, 3688–3693.

    PubMed  CAS  Google Scholar 

  • Kim J. H., Johansen F. E., Catino J. J., Prywes R., and Kumar C. C. (1994) Suppression of Ras transformation by serum response factor. J. Biol. Chem. 269, 13,740–13,743.

    CAS  Google Scholar 

  • Morier-Teissier E. and Rips R. (1987) Catecholamine metabolite measurements in mouse brain using high-performance liquid chromatography and electrochemical detection: comparison of a one-column technique with a two-column switching technique. Methods Enzymol. 142, 535–549.

    Article  PubMed  CAS  Google Scholar 

  • Morinan A. and Garratt H. M. (1985) An improved fluorimetric assay for brain monoamine oxidase. J. Phamacol. Methods. 13, 213–223.

    Article  CAS  Google Scholar 

  • Naoi M., Suzuki H., Takahashi T., Shibahara K., and Nagatsu T. (1987) Ganglioside GM1 causes expression of type B monoamine oxidase in a rat clonal pheochromocytoma cell line, PC12h. J. Neurochem. 49, 1602–1605.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (1991) Molecular biology of prion diseases. Science 252, 1515–1522.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13,363–13,383.

    Article  CAS  Google Scholar 

  • Richards J. G., Saura J., Luque J. M. Cesura A. M., Gottowik J., Malherbe P., et al. (1998) Monoamine oxidase: from brain maps to physiology and transgenics to pathophysiology. J. Neural. Transm. Suppl. 52, 173–187.

    PubMed  CAS  Google Scholar 

  • Rubenstein R., Deng H., Scalici C. L., and Papini M. C. (1991) Alterations in neurotransmitter-related enzyme activity in scrapie-infected PC12 cells. J. Gen. Virol. 72, 1279–1285.

    PubMed  CAS  Google Scholar 

  • Sakaguchi S., Katamine S., Nishida N., Moriuchi R., Shigematsu K., Sugimoto T., et al. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.

    Article  PubMed  CAS  Google Scholar 

  • Salès N., Rodolfo K., Hässig R., Faucheux B., Giamberardino L. D., and Moya K. L. (1998) Cellular prion protein localization in rodent and primate brain. Eur. J. Neurosci. 10, 2464–2471.

    Article  PubMed  Google Scholar 

  • Sourkes T. L. (1972) Influence of specific nutrients on catecholamine synthesis and metabolism. Pharmacol. Rev. 24, 349–359.

    PubMed  CAS  Google Scholar 

  • Stahl N., Borchelt D. R., Hsiao K., and Prusiner S. B. (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51, 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Wei Q., Jurma O. P., and Andersen J. K. (1997) Increased expression of monoamine oxidase-B results in enhanced neurite degeneration in methamphetamine-treated PC12 cells. J. Neurosci. Res. 50, 618–626.

    Article  PubMed  CAS  Google Scholar 

  • Westaway D., DeArmond S. J., Cayetano-Canias. J., Groth D., Foster D., Yang S. L., et al. (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice over-expressing wild-type prion proteins. Cell 76, 117–129.

    Article  PubMed  CAS  Google Scholar 

  • Yun S. W., Choi E. K., Ju W. K., Ahn M. S., Carp R. I., Wisniewski H. M., et al. (1998) Extensive degeneration of catecholaminergic neurons to scrapie agent 87V in the brains of IM mice. Mol. Chem. Neuropathol. 34, 121–132.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HG., Park, SJ., Choi, EK. et al. Increased expression of prion protein is associated with changes in dopamine metabolism and MAO activity in PC12 cells. J Mol Neurosci 13, 121–126 (1999). https://doi.org/10.1385/JMN:13:1-2:121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:121

Index Entries

Navigation