Skip to main content
Log in

Inherited and experimentally induced changes in gating kinetics of muscle nicotinic acetylcholine receptor

  • Minireview
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ligand-gated ion channels (LGIC) allow rapid responses in the nervous system. The nicotonic acetylcholine receptor (AChR) has been the model for structure-function relationship studies on this superfamily. The AChR undergoes the following functional events:

  1. 1.

    Binding of the neurotransmitter.

  2. 2.

    Opening of the ion channel.

  3. 3.

    Conduction of ions across the pore.

  4. 4.

    Desensitization.

The equilibrium among these processes can be perturbed by alteration in the primary structure of the AChR or by the presence of pharmacological agents.

Changes in the primary sequence leading to modifications in gating kinetics may occur in association with physiological or pathological processes. Such changes can also be genetically engineered to gain insights into structure-function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AChR:

nicotinic cholinergic receptor

LGIC:

ligand-gated ion channels

NCI:

noncompetitive inhibitor

PCP:

phencyclidine

HEK:

cells, human embryonic kidney cells

CMS:

congenital myasthenic syndrome

SCCMS:

slow-channel congenital myasthenic syndrome

TID:

3-(trifluoromethyl)3-m-(iodophenyl)diazirine

HC:

hydrocortisone

BSA:

bovine serum albumin

τon :

mean open time

References

  • Andreasen T. J. and McNamee M. G. (1980) Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. Biochemistry 19, 4719–4726.

    Article  PubMed  CAS  Google Scholar 

  • Antollino S. S. and Barrantes F. J. (1998) Disclosure of discrete sites for different lipids at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry 37, 16,653–16,662.

    Google Scholar 

  • Barrantes F. J. (1993) The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions, in New Comprehensive Biochemistry, vol. 26 (Watts A., ed.), Elsevier, Amsterdam, pp. 231–257.

    Google Scholar 

  • Barrantes F. J. (1997) The acetylcholine receptor ligand-gated channel as molecular target of disease and therapeutic agents. Neurochem. Res. 22, 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Barrantes F. J. (1998) Molecular pathology of the acetylcholine receptor, in The Nicotinic Acetylcholine Receptor: Current Views and Future Trends (Barrantes F. J., ed.), Springer Verlag, Berlin, and Landes Bioscience, TX, pp. 175–212.

    Google Scholar 

  • Bertrand D., Galzi J.-L., Devillers-Thiéry A., Bertrand S., and Changeux J.-P. (1993) Stratification of the channel domain in neurotransmitter receptors. Curr. Opinion Cell Biol. 5, 688–693.

    Article  PubMed  CAS  Google Scholar 

  • Blanton M. P. and Cohen J. B. (1992) Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 31, 3738–3750.

    Article  PubMed  CAS  Google Scholar 

  • Blanton M. P. and Cohen J. B. (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33, 2859–2872.

    Article  PubMed  CAS  Google Scholar 

  • Blount P. and Merlie J. P. (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Bouzat C. and Barrantes F. J. (1993a) Effects of long-chain fatty acids on the channel activity of the nicotinic acetylcholine receptor. Recept. Chann. 1, 251–258.

    CAS  Google Scholar 

  • Bouzat C. and Barrantes F. J. (1993b) Hydrocortisone and 11-desoxycortisone modify acetylcholine receptor channel gating. NeuroReport 4, 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Bouzat C. and Barrantes F. J. (1993c) Acute exposure of nicotinic acetylcholine receptors to the synthetic glucocorticoid dexamethasone alters single-channel gating properties. Mol. Neuropharm. 3, 109–116.

    CAS  Google Scholar 

  • Bouzat C. and Barrantes F. J. (1996) Modulation of muscle nicotinic acetylcholine receptors by the glucocorticoid hydrocortisone. Possible allosteric mechanism of channel blockade. J. Biol. Chem. 271, 25,835–25,841.

    CAS  Google Scholar 

  • Bouzat C. and Barrantes F. J. (1997) Assigning functions to residues in the acetylcholine receptor channel region. Mol. Membr. Biol. 14, 167–177.

    PubMed  CAS  Google Scholar 

  • Bouzat C., Bren N., and Sine S. (1994) Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors. Neuron 13, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Bouzat C., Roccamo A. M., Garbus I., and Barrantes F. J. (1998) Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Mol. Pharm. 54, 146–153.

    CAS  Google Scholar 

  • Brisson A. D., Devaux P. F., and Changeux J.-P. (1975) Effet anésthesique local de plusieurs composés liposolubles sur la réponse de l’électroplaque de Gymnote a la carbamylcholine at sur la liaison de l’acétylcholine au récepteur cholinergique de Torpille. Compt. Rend. Acad. Sci. Paris 280D, 2153–2156.

    Google Scholar 

  • Butler D. H., Lasalde J. A., Butler J. K., Tamamizu S., Zimmerman G., and McNamee M. G. (1997) Mouse-Torpedo Chimeric α-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence. Cell. Mol. Neurobiol. 17, 13–33.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Caro A., Sala J. J., Ballesta F., Vicente-Agulló M., Criado F., and Sala A. (1996) A single residue in the M2–M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors. Proc. Natl. Acad. Sci. USA 93, 6118–6123.

    Article  PubMed  CAS  Google Scholar 

  • Changeux J. P. and Revah F. (1987) The acetylcholine receptor molecule: allosteric sites and theion channel. Trends Neurosci. 10, 245–250.

    Article  CAS  Google Scholar 

  • Charnet P., Labarca C., Leonard R. J., Vagellar N. J., Czyzyk L., Gouin A., et al. (1990) An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Nature 35, 235–238.

    Google Scholar 

  • Chen J. and Auerbach A. (1998) A distinct contribution of the delta subunit to acetylcholine receptor channel activation revealed by mutations of the M2 segment. Biophys. J. 75, 218–225.

    PubMed  CAS  Google Scholar 

  • Claudio T., Ballivet M., Patrick J., and Heinemann S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit. Proc. Natl. Acad. Sci. USA 80, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Croxen R., Newland C., Beeson D., Oosterhuis H., Chauplannaz G., Vincent A., et al. (1997) Mutations in different functional domains of the human muscle acetylcholine receptor α subunit in patients with the slow-channel congenital myasthenic syndrome. Hum. Mol. Genet. 6, 767–774.

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiéry A., Galzi J.-L., Bertrand S., Changeux J.-P., and Bertrand D. (1992) Stratified organization of the nicotonic acetylcholine receptor channel. NeuroReport 11, 1001–1004.

    Article  Google Scholar 

  • Devillers-Thiéry A., Galzi J. L., Eiselé J. L., Bertrand S., Bertrand D., and Changeux J-P. (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membr. Biol. 136, 97–112.

    Article  PubMed  Google Scholar 

  • Dilger J. P., Brett R. S., and Lesko L. A. (1991) Effects of isoflurane on acetylcholine receptor channels. 1. Single-channel currents. Mol. Pharm. 41, 127–133.

    Google Scholar 

  • Ellena J. F., Blazing M. G., and McNamee M. G. (1983) Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22, 5523–5535.

    Article  PubMed  CAS  Google Scholar 

  • Engel A. G., Lambert E. H., Mulder D. M., Torres C. F., Sahashi K., Bertorinin T. E., et al. (1982) A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann. Neurol. 11, 553–569.

    Article  PubMed  CAS  Google Scholar 

  • Engel A., Ohno K., Bouzat C., Sine S. M., and Griggs R. C. (1996) End-plate acetylcholine receptor deficiency due to nonsense mutations in the ɛ-subunit. Ann. Neurol. 40, 810–817.

    Article  PubMed  CAS  Google Scholar 

  • Engel A. G., Ohno K., Wang H-L., Milone M., and Sine S. M. (1998) Molecular basis of congenital myasthenic syndromes: mutations in the acetylcholine receptor. The Neuroscientist 4, 185–194.

    Article  CAS  Google Scholar 

  • Fersht A. R., Shi J-P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., et al. (1985) Hydrogen bonding and biological specificity analyzed by protein engineering. Nature 314, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Filatov G. and White M. M. (1995) The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol. Pharmacol. 48, 379–384.

    PubMed  CAS  Google Scholar 

  • Finer-Moore J. and Stroud R. M. (1984) Amphiphathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • García-Colunga J. and Miledi R. (1995) Effects of serotoninergic agents on neuronal nicotinic acetylcholine receptors. Proc. Natl. Acad. Sci. USA 92, 2919–2923.

    Article  PubMed  Google Scholar 

  • Giraudat J., Dennis M., Heidmann T., Chang J.-Y., and Changeux J.-P. (1986) Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the δ subunit is labelled by [3H]chlorpromazine. Proc. Natl. Acad. Sci. USA 83, 2719–2723.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J., Dennis M., Heidmann T., Haumot P.-Y., Lederer F., and Changeux J.-P. (1987) Structure of the high affinity binding site for non-competitive blockers of the acetylcholine receptor. [3H] chlorpromazine labels homologous residues in the β and δ chains. Biochemistry 26, 2410–2418.

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J., Galzi J.L., Revah F., Changeux J.-P., Haumont P. Y., and Lederer F. (1989) The noncompetitive blocker [3H]chlorpromazine labels segment M2 but not segment M1 of the nicotinic acetylcholine receptor α-subunit. FEBS Lett. 253, 190–198.

    Article  PubMed  CAS  Google Scholar 

  • Gomez C. M., Maselli R., Gammack J., Lasalde J., Tamamizu S., Cornblath D. R., et al. (1996) A beta-subunit mutation in the acetylcholine-receptor channel gate causes severe slow-channel syndrome. Ann Neurol. 39, 712–723.

    Article  PubMed  CAS  Google Scholar 

  • Hamill O. P., Marty A., Neher E., Sakmann B., and Sigworth F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Horváth L. I., Arias H. R., Hankowszky H. O., Hideg K., Barrantes F. J., and Marsh D. (1990) Association of spin-labeled anesthetics at the hydrophobic surface of acetylcholine receptor in native membranes from Torpedo marmorata. Biochemistry 29, 8707–8713.

    Article  PubMed  Google Scholar 

  • Hucho F., Tsetlin V. I., and Machold J. (1996) The emerging three-dimensional structure of a receptor. Eur. J. Biochem. 239, 539–557.

    Article  PubMed  CAS  Google Scholar 

  • Imoto K., Busch C., Von Kitzing E., Imoto K., Wang F., Nakai J., et al. (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648.

    Article  PubMed  CAS  Google Scholar 

  • Imoto K., Konno T., Nakai J., Wang F., Mishina M., and Numa S. (1991) A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. FEBS Lett. 289, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Karlin A. and Akabas M. H. (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244.

    Article  PubMed  CAS  Google Scholar 

  • Kearney P. C., Zhang H., Zhong W., Dougherty D. A., and Lester H. A. (1996) Determinants of nicotinic receptor gating in natural and unnatural side chain structures at the M2 9′ position. Neuron 17, 1221–1229.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.-H., Li L., Lasalde J., Rojas L., McNamee M., Ortiz-Miranda S. I., et al. (1994) Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys. J. 66, 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Leonard R. J., Labarca C. G., Charnet P., Davidson N., and Lester H. A. (1988) Evidence that the M2 membrane spanning region lines the ion channel pore of the nicotinic receptor. Science 242, 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Leonard R. J., Charnet P., Labarca C. G., Vogelaar N. J., Czyzyk L., Gouin A., et al. (1991) Reverse pharmacology of the nicotinic acetylcholine receptor. Mapping the local anesthetic binding site. Ann. NY Acad. Sci. 625, 588–599.

    Article  PubMed  CAS  Google Scholar 

  • Lukas R. J. (1998) Neuronal nicotinic acetylcholine receptors, in: The Nicotinic Acetylcholine Receptor: Current Views and Future Trends. Neuroscience Intelligence Unit Springer Verlag, Berlin and Landes Publishing Co., Georgetown, TX, pp. 145–173.

    Google Scholar 

  • Marsh D. and Barrantes F. J. (1978) Immobilized lipid in acetylcholine membranes from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 75, 4329–4333.

    Article  PubMed  CAS  Google Scholar 

  • Marsh D., Watts A., and Barrantes F. J. (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim. Biophys. Acta 645, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S. (1991) Non-genomic and genomic effects of steroids on neuronal activity. Trends Pharmacol. Sci. 12, 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Middlemas D. S. and Raftery M. A. (1987) Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry 26, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Milone M., Wang H.-L., Ohno K., Fujudome K., Pruitt J. N., Bren N., et al. (1997) Slow-channel syndrome caused by enhanced activation, desensitization, and agonist binding affinity due to mutation in the M2 domain of the acetylcholine receptor alpha subunit. J. Neurosci. 17, 5651–5665.

    PubMed  CAS  Google Scholar 

  • Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., et al. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Montal M. (1990) Molecular anatomy and molecular design of channel proteins. FASEB J. 4, 2623–2635.

    PubMed  CAS  Google Scholar 

  • Neher E. and Steinbach J. H. (1978) Local anesthetics transiently block current through single acetylcholine-receptor channels. J. Physiol. 277, 153–176.

    PubMed  CAS  Google Scholar 

  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., et al. (1982) Primary structure of the α subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature (Lond.) 299, 793–797.

    Article  CAS  Google Scholar 

  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., et al. (1983) Primary structures of the β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (Lond.) 301, 251–255.

    Article  CAS  Google Scholar 

  • Ohno K., Hutchinson D. O., Milone M., Brengman J. M., Bouzat C., Sine S. M., et al. (1995) Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the ɛ subunit. Proc. Natl. Acad. Sci. USA 92, 758–762.

    Article  PubMed  CAS  Google Scholar 

  • Ohno K., Wang H-L., Milone M., Bren N., Brengman J. M., Nakano S., et al. (1996) Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine ɛ subunit. Neuron 17, 157–170.

    Article  PubMed  CAS  Google Scholar 

  • Ohno K., Quiram P., Milone M., Wang H-L., Harper M. C., Pruitt J. N., et al. (1997) Congenital myasthenic syndromes due to heteroallelic non-sense/missense mutations in the acetylcholine receptor and subunit gene: identification and functional characterization of six new mutations. Human Mol. Genet. 6, 753–766.

    Article  CAS  Google Scholar 

  • Ortells M. O. and Lunt G. G. (1996) A β-sheet α-helix model for the transmembrane region of the nicotinic acetylcholine receptor. Protein Eng. 9, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Ortells M. O., Barrantes G. E., Wood C., Lunt G. G., and Barrantes F. J. (1997) Molecular modelling of the nicotinic acetylcholine receptor transmembrane region in the open state. Protein Eng. 10, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Prince R. J. and Sine S. M. (1998) The ligand binding domains of nicotinic acetylcholine receptor, in The Nicotinic Acetylcholine Receptor: Current Views and Future Trends (Barrantes F. J., ed.), Springer Verlag, Berlin and Landes Publishing Co., Georgetown, TX, pp. 31–59.

    Google Scholar 

  • Revah F., Galzi J. L., Giraudat J., Haumont P. Y., Lederer F., and Changeux J.-P. (1990) The noncompetitive blocker [3H] chlorpromazine labels three amino acids of the acetylcholine receptor γ subunit: implications for the α helical organization of the MII segments and the structure of the ion channel. Proc. Natl. Acad. Sci. USA 87, 4675–4679.

    Article  PubMed  CAS  Google Scholar 

  • Sine S. M. and Claudio T. (1991) γ-and δ-subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. J. Biol. Chem. 266, 19,369–19,377.

    CAS  Google Scholar 

  • Sine S. M., Ohno O. K., Bouzat C., Auerbach A., Milone M., Pruitt J. N. et al. (1995) Mutation of the acetylcholine receptor α-subunit causes a slow-channel mysathenic syndrome by enhancing agonist binding affinity. Neuron 15, 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Stallcup W. B. and Patrick J. (1980) Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line. Proc. Natl. Acad. Sci. USA 77, 634–638.

    Article  PubMed  CAS  Google Scholar 

  • Ueda Y., Tatara T., Chi J.-S., Krishna P. R., and Kamaya H. (1994) Structure-selective anesthetic action of steroids: anesthetic potency and effects on lipid and protein. Anesth. Analg. 78, 718–725.

    PubMed  CAS  Google Scholar 

  • Unwin N. (1993a) The nicotinic acetylcholine receptor at 9 Å resolution. J. Membr. Biol. 229, 1101–1124.

    CAS  Google Scholar 

  • Unwin N. (1993b) Neurotransmitter action: opening of ligand-gated ion channels. Cell 72, Neuron 10 (Suppl.), 31–41.

    Article  PubMed  Google Scholar 

  • Unwin N. (1995) Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Vincent A., Newland C., Croxen R., and Beeson D. (1997) Genes at the junction—candidates for congenital myasthenic syndromes. TINS 20, 15–22.

    PubMed  CAS  Google Scholar 

  • Wang H-L., Auerbach A., Bren N., Ohno K., Engel A. G., and Sine S. M. (1997) Mutation in the M1 domain of the acetylcholine receptor α subunit decreases the rate of agonist dissociation. J. Gen. Physiol. 109, 757–766.

    Article  PubMed  CAS  Google Scholar 

  • Wilson G. G. and Karlin A. (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouzat, C., Barrantes, F.J. Inherited and experimentally induced changes in gating kinetics of muscle nicotinic acetylcholine receptor. J Mol Neurosci 13, 1–16 (1999). https://doi.org/10.1385/JMN:13:1-2:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:13:1-2:1

Index Entries

Navigation