Skip to main content
Log in

Neural regulation of phenylethanolamine N-methyltransferase (PNMT) gene expression in bovine chromaffin cells differs from other catecholamine enzyme genes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Expression of the gene encoding the epinephrine-synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT) is regulated by hormonal and neural stimuli. Because the 5′-upstream regions of the PNMT do not contain sequences analogous to those demonstrated to convey neural regulation to the tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) catecholamine-synthesizing enzyme genes, functional and biochemical analyses have been utilized to characterize PNMT promoter responses to cholinergic and depolarizing agents. In primary cultures of bovine adrenal medullary chromaffin cells, reporter gene expression from transiently transfected 3- and 0.9-kb-containing PNMT promoter constructs is stimulated approximately twofold by nicotine and muscarine. Depolarizing concentrations of K+ produce fourfold increases in expression. These responses are not detected with constructs containing the proximal 0.3-kb promoter, indicating that the regions between −273 and −877 bp convey neural responsiveness for the PNMT gene in bovine chromaffin cells. Electrophoretic mobility shift assays (EMSAs) with oligonucleotides encoding these regions of the PNMT promoter revealed distinctions in migration of nuclear protein complexes formed following treatment of chromaffin cells with nicotine, muscarine, or 50 mM K+. Thus, the PNMT promoter between 0.3 and 0.9 kb contains sequences capable of responding to cholinergic and depolarization stimuli. Moreover, these treatments influence the interactions of specific nuclear proteins with this region of the PNMT promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baetge E. E., Behringer R. R., Messing A., Brinster R. L., and Palmiter R. D. (1988) Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc. Natl. Acad. Sci. USA 85, 3648–3652.

    Article  PubMed  CAS  Google Scholar 

  • Batter D. K., D’ Mello S. R., Turzai L. M., Hughes H. B., Gioio A. E., and Kaplan B. B. (1988) The complete nucleotide sequence and structure of the gene encoding bovine phenylethanolamine N-methyltransferase. J. Neurosci. Res. 19, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael S. and Stoddard S. L. (eds.) (1993) in The Adrenal Medulla 1989–1993. CRC, Boca Raton, pp. 185–196.

    Google Scholar 

  • Carroll J. M., Evinger M. J., Goodman H. M., and Joh T. H. (1991) Differential and coordinate regulation of TH and PNMT mRNAs in chromaffin cell cultures by second messenger system activation and steroid treatment. J. Mol. Neurosci. 3, 75–83.

    PubMed  CAS  Google Scholar 

  • Craviso G. L., Hemelt V. B., and Waymire J. C. (1992) Nicotinic cholinergic regulation of tyrosine hydroxylase gene expression and catecholamine synthesis in isolated bovine adrenal chromaffin cells. J. Neurochem. 59, 2285–2296.

    Article  PubMed  CAS  Google Scholar 

  • Dignam J. D., Lebovitz R. M., and Roeder R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.

    Article  PubMed  CAS  Google Scholar 

  • Ebert S. N. and Wong D. L. (1995) Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp-1 and Egr-1. J. Biol. Chem. 270, 17,299–17,305.

    Article  CAS  Google Scholar 

  • Ebert S. N., Ficklin M. B., Her S., Siddall B. J., Bell R. A. Ganguly K., et al. (1998) Glucocorticoid-dependent activation of neural crest factor AP-2: Stimulation of phenylethanolamine N-methyltransferase gene expression. J. Neurochem. 70, 2286–2295.

    Article  PubMed  CAS  Google Scholar 

  • Edlund T., Walker M. D., Barr P. J., and Rutter W. J. (1985) Cell specific expression of the rat insulin gene: Evidence for the role of two distinct 5′ flanking elements. Science 230, 912–915.

    Article  PubMed  CAS  Google Scholar 

  • Evinger M. J., Towle A. C., Park D. H., Lee P., and Joh T. H. (1992) Glucocorticoids stimulate transcription of the rat phenylethanolamine N-methyltransferase (PNMT) gene in vivo and in vitro. Cell. Mol. Neurobiol. 12, 193–215.

    Article  PubMed  CAS  Google Scholar 

  • Evinger M. J., Ernsberger P., Regunathan S., Joh T. H., and Reis D. J. (1994) A single transmitter regulates gene expression through two separate mechanisms: Cholinergic regulation of phenylethanolamine N-methyltransferase mRNA via nicotinic and muscarinic pathways. J. Neurosci. 14, 2106–2116.

    PubMed  CAS  Google Scholar 

  • Fader D. and Lewis E. J. (1990) Interaction of cyclic AMP and cell-cell contact in the control of tyrosine hydroxylase RNA. Mol. Brain. Res. 8, 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Fossom L. H., Carson C. D., and Tank A. W. (1991) Stimulation of tyrosine hydroxylase gene transcription rate by nicotine in rat adrenal medulla. Mol. Pharmacol. 40, 193–202.

    PubMed  CAS  Google Scholar 

  • Hiremagalur B., Nankova B., Nitahara J., Zeman R., and Sabban E. L. (1993) Nicotine increases expression of tyrosine hydroxylase gene—Involvement of protein kinase A-mediated pathway. J. Biol. Chem. 268, 23,704–23,711.

    CAS  Google Scholar 

  • Hwang O., Park S. Y., and Kim K. S. (1997) Protein kinase A coordinately regulates both basal expression and cyclic AMP-mediated induction of three catecholamine-synthesizing enzyme genes. J. Neurochem. 68, 2241–2247.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro H., Kim K. T., Joh T. H., and Kim K.-S. (1993) Neuron-specific expression of the human dopamine beta-hydroxylase gene requires both the cAMP response element and a silencer region. J. Biol. Chem. 268, 17,987–17,994.

    CAS  Google Scholar 

  • Kilbourne E. J. and Sabban E. L. (1990) Differential effect of membrane depolarization on levels of tyrosine hydroxylase and dopamine beta-hydroxylase messenger RNAs in PC12 pheochromocytoma cells. Mol. Brain Res. 8, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne E. J., Nankova B. B., Lewis E. J., McMahon A., Osaka H., Sabban D. B., et al. (1992) Regulated expression of the tyrosine hydroxylase gene by membrane depolarization—identification of the responsve element and possible second messengers. J. Biol. Chem. 276, 7563–7569.

    Google Scholar 

  • Kim K.-S., Lee M. K., Carroll J., and John T. H. (1993) Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J. Biol. Chem. 262, 4083–4089.

    Google Scholar 

  • Kim K.-S., Ishiguro H., Tinti C., Wagner J., and Joh T. H. (1994) The cAMP-dependent protein kinase regulates transcription of the dopamine beta-hydroxylase gene. J. Neurosci. 14, 7200–7207.

    PubMed  CAS  Google Scholar 

  • Lazaroff M., Patankar S., Yoon S. O., and Chikaraishi D. M. (1995) The cyclic AMP response element directs tyrosine hydroxylase expression in catecholaminergic cell lines from transgenic mice. J. Biol. Chem. 270, 21,579–21,589.

    CAS  Google Scholar 

  • Lee K. A. W., Bindereif A., and Green M. R. (1988) A small-scale procedure for preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. Gene Anal. Technol. 5, 22–31.

    Article  CAS  Google Scholar 

  • McMahon A. and Sabban E. L. (1992) Regulation of expression of dopamine β-hydroxylase in PC12 cells by glucocorticoids and cyclic AMP analogues. J. Neurochem. 59, 2040–2047.

    Article  PubMed  CAS  Google Scholar 

  • Morita K. and Wong D. L. (1996) Role of egr-1 in cholinergic stimulation of phenylethanolamine N-methyltransferase promoter. J. Neurochem. 67, 1344–1351.

    Article  Google Scholar 

  • Morita S., Kobayashi K., Hidaka H., and Nagatsu T. (1992) Organization and complete nucleotide sequence of the gene encoding mouse phenylethanolamine N-methlytransferase. Mol. Brain Res. 13, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Morita K., Ebert S. N., and Wong D. L. (1995) Role of transcription factor egr-1 in phorbol ester-induced phenylethanolamine N-methyltransferase gene expression. J. Biol. Chem. 270, 11,161–11,167.

    CAS  Google Scholar 

  • Nagamoto-Combs K., Piech K. M., Best J. A., Sun B., and Tank A. W. (1997) Tyrosine hydroxylase gene promoter activity is regulated by cyclic AMP-responsive element and AP1 sites following calcium influx. J. Biol. Chem. 272, 6051–6058.

    Article  PubMed  CAS  Google Scholar 

  • Nordeen S. K. (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6, 454–457.

    PubMed  CAS  Google Scholar 

  • Prestridge D. S. (1991) SIGNALSCAN. A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7, 203–206.

    PubMed  CAS  Google Scholar 

  • Ross M. E., Evinger M. J., Hyman S. E., Carroll J. M., Mucke L., Comb M., et al. (1990) Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase (PNMT) promoter using fusion genes introduced into chromaffin cells in primary culture. J. Neurosci. 10, 520–530.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning—A Laboratory Manual, 2nd ed. Cold Springer Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sasaoka T., Kaneda N., Kurosawa Y., Fujita K., and Nagatsu T. (1989) Structure of human phenylethanolamine N-methyltransferase gene: existence of two types of mRNA with different transcription initiation sites. Neurochem. Int. 15, 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Seo H., Yang C., Kim H. S., and Kim K.-S. (1996) Multiple protein factors interact with the cis-regulatory elements of the proximal promoter in a cell-specific manner and regulate transcription of the dopamine β-hydroxylase gene. J. Neurosci. 16, 4102–4112.

    Google Scholar 

  • Shaskus J., Greco D., Asnani L. P., and Lewis E. J. (1992) A bifunctional genetic regulatory element of the rat dopamine beta-hydroxylase gene influences cell type specificity and second messenger-mediated transcription. J. Biol. Chem. 267, 18,821–18,830.

    CAS  Google Scholar 

  • Stachowiak M. K., Hong J. S., and Viveros O. H. (1990) Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase, and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Brain Res. 510, 227–238.

    Article  Google Scholar 

  • Stachowiak M. K., Goc A., Hong J.-S., Poisner A., Jiang H.-K., and Stachowiak E. K. (1994) Regulation of tyrosine hydroxylase gene expression in depolarized non-transformed bovine adrenal medullary cells: second messenger systems and promoter mechanisms. Mol. Brain Res. 22, 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Swanson D. J., Zellmer E., and Lewis E. J. (1998) AP1 proteins mediate the cAMP response of the dopamine β-hydroxylase gene. J. Biol. Chem. 273, 24,065–24,074.

    CAS  Google Scholar 

  • Tang K., Wu H., Mahata S. K., Taupenot L., Rozansky D. J., Parmer R. J., et al. (1996) Stimulus-transcription coupling in pheochromocytoma cells. J. Biol. Chem. 271, 28,382–28,290.

    Google Scholar 

  • Tönshoff C., Hemmick L., and Evinger M. J. (1997) Pituitary adenylate cyclase activating polypeptide (PACAP) regulates expression of catecholamine biosynthetic enzyme genes in bovine adrenal chromaffin cells. J. Mol. Neurosci. 9, 127–140.

    PubMed  Google Scholar 

  • Van Nguyen T., Kobierski L. A., Comb M. J., and Hyman S. E. (1990) The effect of depolarization on expression of the human enkephalin gene is synergistic with cAMP and dependent upon a cAMP-inducible enhancer. J. Neurosci. 10, 2825–2833.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YS.E., Raia, G., Tönshoff, C. et al. Neural regulation of phenylethanolamine N-methyltransferase (PNMT) gene expression in bovine chromaffin cells differs from other catecholamine enzyme genes. J Mol Neurosci 12, 53–68 (1999). https://doi.org/10.1385/JMN:12:1:53

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:12:1:53

Index Entries

Navigation