Skip to main content
Log in

Identification of amino-terminal sequences contributing to tryptophan hydroxylase tetramer formation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Tryptophan hydroxylase (TPH) catalyzes the rate-limiting step in the biosynthesis of serotonin. In the rabbit, TPH exists as a tetramer of four identical 51-kDa subunits comprised of 444 amino acids each. The enzyme consists of an amino-terminal regulatory domain and a carboxyl-terminal catalytic domain. Previous studies demonstrated that within the carboxyl-terminus of TPH, there resides an intersubunit binding domain (a leucine zipper) that is essential for tetramer formation. However, it is hypothesized that a 4,3-hydrophobic repeat identified within the regulatory domain of TPH (residues 21–41) may also be involved in macromolecular assembly. To test this hypothesis, a series of amino-terminal deletions (NΔ15, 30, 41, and 90) were created and assessed for macromolecular structure using size-exclusion chromatography. The amino-terminal deletion NΔ15, upstream from the 4,3-hydrophobic repeat, was capable of forming tetramers. However, when a portion of the 4,3-hydrophobic repeat was deleted (NΔ30), a heterogeneous elution pattern of tetramers, dimers, and monomers was observed. Complete removal of the 4,3-hydrophobic repeat (NΔ41) rendered the enzyme incapable of forming tetramers; a monomeric form predominated. In addition, a double-point mutation (V28R-L31R) was created in the hydrophobic region of the enzyme. The introduction of two arginines (R) at positions 28 and 31 respectively, in the helix disrupted the native tetrameric state of TPH. According to size-exclusion chromatography analysis, the double-point mutant (V28R-L31R) formed dimers of 127 kDa. Thus, it is concluded that there is information within the amino-terminus that is necessary for tetramer formation of TPH. This additional intersubunit binding domain in the amino-terminus is similar to that found in the carboxyl-terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRP:

horseradish peroxidase

NΔ:

amino-terminal deletion

PAGE:

polyacrylamide gel electrophoresis

PH:

phenylalanine hydroxylase

SDS:

sodium dodecyl sulfate

TH:

tyrosine hydroxylase

TPH:

tryptophan hydroxylase

GST:

glutathione-S-transferase

dNTP:

deoxynucleoside triphosphate (mixed base)

References

  • Abate C. and Joh T. H. (1991) Limited proteolysis of rat brain tyrosine hydroxylase defines an N-terminal region required for regulation of cofactor binding and directing substrate specificity. J. Mol. Neurosci. 2, 203–215.

    PubMed  CAS  Google Scholar 

  • Abate C., Smith J. A., and Joh T. H. (1988) Characterization of the catalytic domain of bovine adrenal tyrosine hydroxylase. Biochem. Biophys. Res. Commun. 151, 1446–1453.

    Article  PubMed  CAS  Google Scholar 

  • Beevers S. J., Knowles R. G., and Pogson C. I. (1983) A sensitive radiometric assay for tryptophan hydroxylase applicable to crude extracts. J. Neurochem. 40, 894–897.

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy E., Ferrara P., Rohrer H., Gros F., and Thibault J. (1988) Role of the N-terminus of rat pheochromocytoma tyrosine hydroxylase in the regulation of the enzyme’s activity. J. Biochem. 174, 685–690.

    CAS  Google Scholar 

  • Daubner S. C. and Piper M. M. (1995) Deletion mutants of tyrosine hydroxylase identify a region critical for heparin binding. Protein Sci. 4, 538–541.

    Article  PubMed  CAS  Google Scholar 

  • Daubner S. C., Lohse D. L., and Fitzpatrick P. F. (1993) Expression and characterization of catalytic and regulatory domains of rat tyrosine hydroxylase. Protein Sci. 2, 1452–1460.

    PubMed  CAS  Google Scholar 

  • D’Sa C. M., Arthur R. E. Jr., Jennings I., Cotton R. G. H., and Kuhn D. M. (1996a) Tryptophan hydroxylase: Purification by affinity chromatography on calmodulin-sepharose. J. Neurosci. Methods 69, 149–153.

    Article  Google Scholar 

  • D’Sa C. M., Arthur R. E. Jr., and Kuhn D. M. (1996b) Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: delineation of the enzyme catalytic core. J. Neurochem. 67, 917–926.

    Article  Google Scholar 

  • Goodwill K. E., Sabatier C., Marks C., Eaag R., Fitzpatrick P. F., and Stevens R. C. (1997) Crystal structure of tyrosine hydroxylase at 2.3Å and its implications for inherited neurodegenerative diseases. Nature Struct. Biol. 4, 578–585.

    Article  PubMed  CAS  Google Scholar 

  • Grenett H. E., Ledley F. D., Reed L. L., and Woo S. L. C. (1987) Full-length cDNA for rabbit tryptophan hydroxylase: Functional domains and evolution of aromatic amino acid hydroxylases. Proc. Natl. Acad. Sci. USA 84, 5503–5534.

    Article  Google Scholar 

  • Grima B., Lamouroux A., Blanot F., Faucon Biguet N., and Mallet J. (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc. Natl. Acad. Sci. USA 82, 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Hufton S. E., Jennings I. G., and Cotton R. G. H. (1995) Structure and function of the aromatic amino acid hydroxylases. Biochem. J. 311, 353–366.

    PubMed  CAS  Google Scholar 

  • Hufton S. E., Jennings I. G., and Cotton R. G. H. (1998) Structure/function analysis of the domains required for the multimerisation of phenylalanine hydroxylase. Biochim. Biophys. Acta 1382, 295–304.

    PubMed  CAS  Google Scholar 

  • Kiuchi K., Kiuchi K., Titani K., Fujita K., Suzuki K., and Nagatsu T. (1991) Limited proteolysis of tyrosine hydroxylase by Ca2+-activated neutral protease (calpain). Biochemistry 30, 10,416–10,419.

    Article  CAS  Google Scholar 

  • Knappskog P. M., Flatmark T., Aarden J. M., Haavik J., and Martinez A. (1996) Structure/function relationships in human phenylalanine hydroxylase. Eur. J. Biochem. 242, 813–821.

    Article  Google Scholar 

  • Kobe B., Jennings I. G., House C. M., Feil S. C., Michell B. J., Tiganis T., et al. (1997) Regulation and crystallization of phosphorylated and dephosphorylated forms of truncated dimeric phenylalanine hydroxylase. Protein Sci. 6, 1352–1357.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn D. M., Ruskin B., and Lovenberg W. (1980) Tryptophan hydroxylase: the role of oxygen, iron, and sulfhydryl groups as determinants of stability and catalytic activity. J. Biol. Chem. 255, 4137–4143.

    PubMed  CAS  Google Scholar 

  • Kumer S. C., Mockus S. M., Rucker P. J., and Vrana K. E. (1997) Amino terminal deletion analysis of tryptophan hydroxylase: PKA phosphorylation occus at serine-58. J. Neurochem. 69, 1738–1745.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lohse D. L. and Fitzpatrick P. F. (1993) Identification of the intersubunit binding region in rat tyrosine hydroxylase. Biochem. Biophys. Res. Commun. 197, 1543–1548.

    Article  PubMed  CAS  Google Scholar 

  • Mockus S. M. and Vrana K. E. (1998) Advances in the molecular characterization of tryptophan hydroxylase. J. Mol. Neurosci. 10, 163–179.

    PubMed  CAS  Google Scholar 

  • Mockus S. M., Kumer S. C., and Vrana K. E. (1997a) Carboxyl terminal deletion analysis of tryptophan hydroxylase. Biochim. Biophys. Acta 1342, 132–140.

    PubMed  CAS  Google Scholar 

  • Mockus S. M., Kumer S. C., and Vrana K. E. (1997b) A chimeric tyrosine/tryptophan hydroxylase: The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity. J. Mol. Neurosci. 9, 35–48.

    PubMed  CAS  Google Scholar 

  • Moran G. R., Daubner S. C., and Fitzpatrick P. L. (1998) Expression and characterization of the catalytic core of tryptophan hydroxylase. J. Biol. Chem. 273, 12,259–12,266.

    Article  CAS  Google Scholar 

  • Ota A., Yoshida S., and Nagatsu T. (1995) Deletion mutagenesis of human tyrosine hydroxylase type 1 regulatory domain. Biochem. Biophys. Res. Commun. 213, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  • Pember S. O., Villafranca J. J., and Benkovic, S. J. (1987) Chromobacterium violaceum phenylalanine 4-monooxygenase. Methods Enzymol. 142, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Quinsey N. S., Lenaghan C. M., and Dickson P. W. (1996) Identification of Gln313 and Pro327 as residues critical for substrate inhibition in tyrosine hydroxylase. J. Neurochem. 66, 908–914.

    Article  Google Scholar 

  • Ribeiro P., Wang Y., Citron B. A., and Kaufman S. (1993) Deletion mutagenesis of rat PC12 tyrosine hydroxylase regulatory and catalytic domains. J. Mol. Neurosci. 4, 125–139.

    PubMed  CAS  Google Scholar 

  • Vrana K. E., Rucker P., and Kumer S. C. (1994a) Recombinant rabbit tryptophan hydroxylase is a substrate cAMP-dependent protein kinase. Life Sci. 55, 1045–1052.

    Article  PubMed  CAS  Google Scholar 

  • Vrana K. E., Walker S. J., Rucker P., and Liu X. (1994b) A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation. J. Neurochem. 63, 2014–2020.

    Article  PubMed  CAS  Google Scholar 

  • Vrana S. L., Dworkin S. I., and Vrana K. E. (1993) Radioenzymatic assay for tryptophan hydroxylase: [3H2O] release assessed by charcoal adsorption. J. Neurosci. Methods 48, 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Walker J., Crowley P., Moreman A. D., and Barrett J. (1993) Biochemical properties of cloned glutathione S-transferases from Schistosoma mansoni and Schistosoma japonicum. Mol. Biochem. Parasitol. 61, 255–264.

    Article  PubMed  CAS  Google Scholar 

  • Walker S. J., Liu X., Roskoski R. Jr., and Vrana K. E. (1994) Catalytic core of rat tyrosine hydroxylase: Terminal deletion analysis of bacterially-expressed enzyme. Biochim. Biophys. Acta 1206, 113–119.

    PubMed  CAS  Google Scholar 

  • Yang X. J. and Kaufman S. (1994) High-level expression and deletion mutagenesis of human tryptophan hydroxylase. Proc. Natl. Acad. Sci. USA 91, 6659–6663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent E. Vrana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yohrling, G.J., Mockus, S.M. & Vrana, K.E. Identification of amino-terminal sequences contributing to tryptophan hydroxylase tetramer formation. J Mol Neurosci 12, 23–34 (1999). https://doi.org/10.1385/JMN:12:1:23

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:12:1:23

Index Entries

Navigation