Skip to main content
Log in

Characterization of the chicken transitin gene reveals a strong relationship to the nestin intermediate filament class

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Our laboratory previously reported that transitin is a radial glial intermediate filament protein sharing the basic structural features common to all intermediate filament (IF) proteins. It contains an α-helical core domain flanked by a short nonhelical head and a long COOH-terminal tail. The core sequence of transitin shows the greatest similarity to Xenopus tanabin and to rat and human nestin. We also reported that transitin has multiple splice variants derived from the deletion or inclusion of a leucine-zipper heptad repeat domain in the COOH-terminal tail. In the present study, we provide new evidence to support the classification of nestin and transitin in the same group of IF proteins based on the number and position of its introns. In addition, we suggest that the different isoforms of transitin are produced by a splicing mechanism that recognizes consensus 5′ and 3′ splice sites contained within the coding sequence of the leucine-zipper heptad repeat domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcarek J. M. and Cowan N. J. (1985) Structure of the mouse glial fibrillary acidic protein gene: implications for the evolution of the intermediate filament multigene family. Nuclei Acid Res. 13, 5527–5543.

    Article  CAS  Google Scholar 

  • Balvay L., Libri D., and Fiszman M. Y. (1993) Pre-mRNA secondary structure and regulation of splicing. Bioessays 15, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Chabot P. and Vincent M. (1990) Transient expression of an intermediate filament-associated protein (IFAPa-400) during in vivo and in vitro differentiation of chick embryonic cells derived from neuroectoderm. Dev. Brain Res. 54, 195–204.

    Article  CAS  Google Scholar 

  • Cole G. J. and Lee J-A. (1997) Immunocytochemical localization of a novel radial glial intermediate filament protein. Dev. Brain Res. 101, 225–238.

    Article  CAS  Google Scholar 

  • Dahlstrand J., Zimmerman L. B., McKay R. D. G., and Lendahl U. (1992) Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J. Cell Sci. 103, 589–597.

    PubMed  CAS  Google Scholar 

  • Fuchs E. (1996) The cytoskeleton and disease: genetic disorders of intermediate filaments. Annu. Rev. Gene. 30, 197–231.

    Article  Google Scholar 

  • Fuchs E. and Weber K. (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345–382.

    PubMed  CAS  Google Scholar 

  • Gounari F., Merdes A., Quinlan R., Hess J., FitzGerald P.G., Ouzounis C.A., et al. (1993) Bovine filensin possesses primary and secondary structure similarity to intermediate filament proteins. J. Cell Biol. 121, 847–853.

    Article  PubMed  CAS  Google Scholar 

  • Hemken P. M., Bellin R. M., Sernett S. W., Becker B., Huiatt T. W., and Robson R. M. (1997) Molecular characteristics of the novel intermediate filament protein paranemin. J. Biol. Chem. 272, 32,489–32,499.

    Article  CAS  Google Scholar 

  • Hemmati-Brivanlou A., Mann R. W., and Harland R. M. (1992) A protein expressed in the growth cones of embryonic vertebrate neurons defines a new class of intermediate filament protein. Neuron 9, 417–428.

    Article  PubMed  CAS  Google Scholar 

  • Ho C.-L. and Liem R. K. H. (1996) Intermediate filaments in the nervous system; implications in cancer. Cancer Metastasis Rev. 15, 483–497.

    Google Scholar 

  • Josephson R., Muller T., Pickel J., Okabe S., Reynolds K., Turner P. A., Zimmer A., and McKay R. D. G. (1998) POU transcription factors control expression of CNS stem cell-specific genes. Development 125, 3087–3100.

    PubMed  CAS  Google Scholar 

  • Kachinsky A. M., Dominov J. A., and Miller J. B. (1995) Intermediate filaments in cardiac myogenesis: nestin in the developing mouse heart. J. of Histochem. Cytochem. 43, 843–847.

    CAS  Google Scholar 

  • Kelly M. M., Phanhthourath C., Brees D. K., McCabe C. F., and Cole G. J. (1995) Molecular characterization of EAP-300: a high molecular weight, embryonic polypeptide containing an amino acid repeat comprised of multiple leucine-zipper motifs. Dev. Brain Res. 85, 31–47.

    Article  CAS  Google Scholar 

  • Klymkowsky M. W. (1995) Intermediate filaments: new proteins, some answers, more question. Curr. Opinion Cell Biol. 7, 46–54.

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky M. W. (1996) Intermediate filaments as dynamic structures. Cancer Metastasis Rev. 15, 417–428.

    Google Scholar 

  • Lee M. K. and Cleveland D. W. (1996) Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217.

    Article  Google Scholar 

  • Lees J. F., Shneidman P. S., Skuntz S. F., Carden M. J., and Lazzarini R. A. (1988) The structure and organization of the human heavy neurofilament subunit (NF-H) and the gene encoding it. EMBO J. 7, 1947–1955.

    PubMed  CAS  Google Scholar 

  • Lenardo M. J., Kuang A., Gifford A., and Baltimore D. (1989) Purified bovine NF-κB recognizes regulatory sequences in multiple genes expressed during activation of T- and B-lymphocytes. Modern Trends Hum. Leukemia VIII 32, 411–415.

    CAS  Google Scholar 

  • Lendahl U., Zimmerman L. B., and McKay R. D. G. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Lewis S. A. and Cowan N. J. (1986) Anomalous placement of introns in a member of the intermediate filament multigene family; an evolutionary conundrum. Mol. Cell. Biol. 6, 1529–1534.

    PubMed  CAS  Google Scholar 

  • Li Z., Lilienbaum A., Butler-Browne G., and Paulin D. (1989) Human desmin-coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development. Gene 78, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Liou H.-C. and Baltimore D. (1993) Regulation of the NFκB/rel transcription factor and IκB inhibitor system. Curr. Opinion Cell Biol. 5, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Lothian C. and Lendahl U. (1997) An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur. J. Neurosci. 9, 452–462.

    Article  PubMed  CAS  Google Scholar 

  • Mak C.-H., Li Z., Allen C. E., Liu Y., and Wu L.-C. (1998) Identification of an intron which encodes for a DNA binding structure. Immunogenetics 48, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Marchuk D., McCrohon S., and Fuchs E. (1984) Remarkable conservation of structure among intermediate filament genes. Cell 39, 491–498.

    Article  PubMed  CAS  Google Scholar 

  • McCabe C. F. and Cole G. J. (1992) Expression of a the barrier-associated proteins EAP-300 and claustrin in the developing central nervous system. Dev. Brain Res. 70, 9–24.

    Article  CAS  Google Scholar 

  • McCabe C. F., Thompson R. P., and Cole G. J. (1992) Distribution of the novel developmentally-regulated protein EAP-300 in the embryonic chick nervous system. Developmental Brain Research 66, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • McCabe C. F., Gourdie R. G., Thompson R. P., and Cole G. J. (1995) Developmentally regulated neural protein EAP-300 is expressed by myocardium and cardiac neural crest during chick embryogenesis. Dev. Dynamics 203, 51–60.

    CAS  Google Scholar 

  • Merdes A., Gounari F., and Georgatos S. D. (1993) The 47-kD lens-specific phakinin is a tailless intermediate filament protein and an assembly partner of filensin. J. Cell Biol. 123, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  • Myers M. W., Lazzarini R. A., Lee V. M.-Y., Schlaepfer W. W., and Nelson D. L. (1987) The human midsize neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J. 6, 1617–1626.

    PubMed  CAS  Google Scholar 

  • O’Hare P., Goding C. R., and Haigh A. (1988) Direct combinatorial interaction between a herpes simplex virus regulating protein and a cellular octamer-binding factor mediates specific induction of virus immediate-early gene expression. EMBO J. 7, 4231–4238.

    PubMed  CAS  Google Scholar 

  • Sawada K., Agata J., Eguchi G., Quinlan R., and Maisel H. (1995) The predicted structure of chick lens CP49 and a variant thereof, CP49ins, the first vertebrate cytoplasmic intermediate filament protein with a lamin-like insertion in helix 1B. Curr. Eye Res. 14, 545–553.

    PubMed  CAS  Google Scholar 

  • Shapiro M. B. and Senapathy P. (1987) RNA splice junctions of different classes of eukyotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174.

    Article  PubMed  CAS  Google Scholar 

  • Steinert P. M. and Roop D. R. (1988) Molecular and cellular biology of intermediate filaments. Ann. Rev. Biochem. 57, 593–625.

    Article  PubMed  CAS  Google Scholar 

  • Takano T. and Becker L. E. (1997) Developmental change of the nestin-immunoreactive midline raphe glial structure in human brainstem and spinal cord. Dev. Neurosci. 19, 202–209.

    PubMed  CAS  Google Scholar 

  • Wegner M., Drolet D. W., and Rosenfeld M. G. (1993) POU-domain proteins: Structure and function of developmental regulators. Curr. Opinion Cell Biol. 5, 488–498.

    Article  PubMed  CAS  Google Scholar 

  • Wirth T., Staudt L., and Baltimore D. (1987) An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature 329, 174–178.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y., Lee J.-A., Napier A., and Cole G. J. (1997) Molecular cloning of a new intermediate filament protein expressed by radial glia and demonstration of alternative splicing in a novel heptad repeat region located in the carboxy-terminal tail domain. Mol. Cell. Neurosci. 10, 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman L., Lendahl U., Cunningham M., McKay R., Parr B., Gavin B., et al. (1994) Independent regulatory elements in the nestin gene directs transgene expression to neural stem cells or muscle precursors. Neuron 12, 11–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napier, A., Yuan, A. & Cole, G.J. Characterization of the chicken transitin gene reveals a strong relationship to the nestin intermediate filament class. J Mol Neurosci 12, 11–22 (1999). https://doi.org/10.1385/JMN:12:1:11

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:12:1:11

Index Entries

Navigation