Skip to main content
Log in

Expression of superoxide dismutase messenger RNA in adult rat brain cholinergic neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) protects cells exposed to an excess of the free radical nitric oxide, by preventing the formation of peroxynitrite. Certain central cholinergic neurons express constitutive nitric oxide synthase (nNOS), and presumably they are at risk from peroxynitrite intoxication. Immunocytochemistry for choline acetyltransferase (ChAT) was combined with in situ hybridization histochemistry (ISHH) to examine whether brain cholinergic populations differ with respect to their expression of the messenger RNA molecules (mRNAs) for the manganese-dependent (Mn-SOD) and copper/zinc-dependent superoxide dismutases (Cu/Zn-SOD).

The cholinergic neurons located in the reticular formation of the upper brainstem (the laterodorsal tegmental nucleus [LDTN] and the pedunculopontine nucleus [PPN]) were found to express relatively high levels of Mn-SOD mRNA, whereas cholinergic neurons located in the basal forebrain (substantia innominata [SI], diagonal band [DB], medial septum [MS], and the nucleus basalis magnocellularis [nBM]), and the striatal cholinergic interneurons expressed low to intermediate levels of Mn-SOD mRNA. The rank order of median Mn-SOD mRNA density per cholinergic cell was LDTN > PPN > SI > striatum = nBM = DB > MS. This is similar to the rank order of nNOS mRNA densities in the cholinergic cells in these regions (R=0.9, p<0.02). The rank order of Cu/Zn-SOD mRNA levels in cholinergic populations (DB > LDTN = PPN = MS > SI = nBM = striatum) was not correlated with nNOS mRNA (R = 0.29, P>0.05). Thus, for cholinergic neurons, Mn-SOD may be important for protection from NO-related oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal M. F., Ferrante R. J., Browne S. E., Matthews R. T., Kowall N. W., and Brown R. H. (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42, 644–654.

    Article  PubMed  CAS  Google Scholar 

  • Behrens M. I., Koh J. Y., Muller M. C., and Choi D. W. (1996) NADPH diaphorase-containing striatal or cortical neurons are resistant to apoptosis. Neurobiol. Dis. 3, 72–75.

    Article  Google Scholar 

  • Bellmann K., Jaattela M., Wissing D., Burkart V., and Kolb H. (1996) Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Lett. 391, 185–188.

    Article  Google Scholar 

  • Boissiere F., Hunot S., Faucheu B., Duyckaerts C., Hauw J.-J., Agid Y., et al. (1997) Nuclear translocation of NF-κB in cholinergic neurons in patients with Alzheimer’s disease. NeuroReport 8, 2849–2852.

    Article  PubMed  CAS  Google Scholar 

  • Bolanos J. P., Almeida A., Stewart V., Peuchen S., Land J. M., Clark J. B., et al. (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68, 2227–2240.

    Article  PubMed  CAS  Google Scholar 

  • Cross A. H., Manning P. T., Stern M. K., and Misko T. P. (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination, J. Neuroimmunol. 80, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Dawson V. L., Dawson T. M., Bartley D. A., Uhl G. R., and Snyder S. H. (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661.

    PubMed  CAS  Google Scholar 

  • Ferrante R. J., Kowal N. W., Beal M. F., Richardson E. P., Bird E. D., and Martin J. B. (1995) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230, 561–563.

    Article  Google Scholar 

  • Gaspar P., Duyckaerts C., Febvret A., Benoit R., Beck B., and Berger B. (1989) Subpopulations of somatostatin 28-immunoreactive neurons display different vulnerability in senile dementia of the Alzheimer type. Brain Res. 490, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Zulueta M., Ensz L. M., Mukhina G., Lebovitz R. M., Zwacka R. M., Englehardt J. F., et al. (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J. Neurosci. 18, 2040–2055.

    PubMed  CAS  Google Scholar 

  • Good P. F., Werner P., Hsu A., Olanow C. W., and Perl D. P. (1998) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol. 149, 21–28.

    Google Scholar 

  • Harrington C. A. and Wenk G. L. (1992) Differential vulnerability of basal forebrain cholinergic and NADPH-diaphorase cells. Psychobiology 20, 254–260.

    CAS  Google Scholar 

  • Harrington C. A., Mobley S. L., and Wenk G. L. (1994) Nitric oxide does not underlie the memory deficits produced by ibotenate injections into the nucleus basalis. Behav. Neurosci. 108, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman D. M., Lee S., Li Y., Chua-Couzens J., Xia H., Bredt D. S., et al. (1996) Expression of neuronal-NOS in developing basal forebrain cholinergic neurons: regulation by NGF. Neurochem. Res. 21, 861–868.

    Article  Google Scholar 

  • Hyman B., Marzloff K., Wenniger J., Dawson T., Bredt D., and Snyder S. (1992) Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer’s disease. Ann. Neurol. 32, 818–820.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S., Takagi H., Suzuki K., Akai F., and Taniguchi N. (1991) Intense immunoreactivity for Mn-superoxide dismutase (Mn-SOD) in cholinergic and noncholinergic neurons in the rat basal forebrain. Brain Res. 541, 354–357.

    Article  PubMed  CAS  Google Scholar 

  • Inglis W. L. and Semba K. (1996) Colocalization of ionotropic glutamate receptor subunits with NADPH-diaphorase-containing neurons in the rat mesopontine tegmentum. J. Comp. Neurol. 368, 17–32.

    Article  Google Scholar 

  • Inglis W. L. and Semba K. (1997) Discriminable excitotoxic effects of ibotenic acid, AMPA, NMDA, and quinolinic acid in the lateral dorsal tegmental nucleus. Brain Res. 755, 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Jones P. L., Ping D., and Boss J. M. (1997) Tumor necrosis factor alpha and interleukin-1b regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-β and NF-κB. Mol. Cell. Biol. 17, 6970–6981.

    PubMed  CAS  Google Scholar 

  • Kato H., Kogure K., Araki T., Liu X. H., Kato K., and Itoyama Y. (1995) Immunohistochemical localization of superoxide dismutase in the hippocampus following ischemia in a gerbil model of ischemic tolerance. J. Cereb. Blood Flow Metab. 15, 60–70.

    PubMed  CAS  Google Scholar 

  • Keller J. N., Kindy M. S., Holtsberg F. W., St. Clair D. K., Yen H.-C., Germeyer A., et al. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697.

    PubMed  CAS  Google Scholar 

  • Koh J. Y. and Choi D. W. (1988) Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. J. Neurosci. 8, 2153–2163.

    PubMed  CAS  Google Scholar 

  • Lebovitz R. M., Zhang H., Vogel H., Cartwright J., Dionne L, Lu N., et al. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 93, 9782–9787.

    Article  Google Scholar 

  • Leeuwenburgh C., Hardy M. M., Hazen S. L., Wagner P., Oh-ishi S., Steinbrecher U. P., et al. (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem. 273, 1433–1436.

    Google Scholar 

  • Liu P., Hock C. E., Nagele R., and Wong P. Y. (1997) Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am. J. Physiol. 272, H2327–2336.

    PubMed  CAS  Google Scholar 

  • MacMillan-Crow L. A., Crow J. P., and Thompson J. A. (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37, 1613–1622.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. F., Goodman Y., Luo H., Fu W., and Furukawa K. (1997) Activation of NF-κB protects hippocampal neurons against oxidative stressinduced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49, 681–697.

    Article  PubMed  CAS  Google Scholar 

  • McMillian M., Kong L. Y., Sawin S. M., Wilson B., Das K., Hudson P., et al. (1995) Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures. Biochem. Biophys. Res. Commun. 215, 572–577.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis E. K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitoxicity, oxidative stress and aging. Prog. Neurobiol. 54, 369–415.

    Article  PubMed  CAS  Google Scholar 

  • Murakami K, Kondo T., Kawase M., Li Y., Sato S., Chen S. F., et al. (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci. 18, 205–313.

    PubMed  CAS  Google Scholar 

  • Ohtsuki T., Matsumoto M., Kuwabara K., Kitagawa K., Suzuki K., Taniguchi N., et al. (1992) Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res. 599, 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Poluha W., Schonhoff C. M., Harrington K. S., Lachyankar M. B., Crosbie N. E., Bulseco D. A., et al. (1997) A novel, nerve growth factor-activated pathway involving nitric oxide, p53, and p21WAF1 regulates neuronal differentiation of PC12 cells. J. Biol. Chem. 272, 24,002–24,007.

    Article  CAS  Google Scholar 

  • Schulz J. B., Matthews R. T., Jenkins B. G., Ferrante R. J., Siwek D., Hensaw D. R., et al. (1995) Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo. J. Neurosci. 15, 8419–8429.

    PubMed  CAS  Google Scholar 

  • Sies H., Sharov V. S., Klotz L.-O., and Briviba K. (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem. 272, 27,812–27,817.

    Article  CAS  Google Scholar 

  • Smith M. A., Richey Harris P. L., Sayre L. M., Beckman J. S., and Perry G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17, 2653–2657.

    PubMed  CAS  Google Scholar 

  • Sugaya K. and McKinney M. (1994) Nitric oxide synthase gene expression in cholinergic neurons in the rat brain examined by combined immunocytochemistry and in situ hybridization histochemistry. Mol. Brain Res. 23, 111–125.

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K., Chouinard M., Greene R., Robbins M., Personett D., Kent C., et al. (1996) Molecular indices of neuronal and glial plasticity in the hippocampal formation in a rodent model of age-induced spatial learning impairment. J. Neurosci. 16, 3427–3443.

    Google Scholar 

  • Szabo C. (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res. Bull. 41, 131–141.

    Google Scholar 

  • Tanaka K., Shirai T., Nagata E., Dembo T., and Fukuuchi Y. (1997) Immunohistochemical detection of nitrotyrosine in postischemic cerebral cortex in gerbil. Neurosci. Lett. 235, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Unger J. W. and Lange W. (1992) NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer’s disease. Acta Neuropathol. 83, 636–646.

    Article  PubMed  CAS  Google Scholar 

  • Van der Veen R. C., Hinton D. R., Incardonna F., and Hofman F. M. (1997) Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J. Neuroimmunol. 77, 1–7.

    Article  PubMed  Google Scholar 

  • Wada K., Okada N., Yamamura T., and Koizumi S. (1996) Nerve growth factor induces resistance of PC12 cells to nitric oxide cytotoxicity. Neurochem. Int. 29, 461–467.

    Article  Google Scholar 

  • Wenk G. L. (1995) Neuroprotection and selective vulnerability of neurons within the nucleus basalis magnocellularis. Behav. Brain Res. 72, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Woolf N. J., Jacobs R. W., and Butcher L. L. (1989) The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer’s disease. Neurosci. Lett. 96, 277–282.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, C., Sugaya, K., Bryan, D. et al. Expression of superoxide dismutase messenger RNA in adult rat brain cholinergic neurons. J Mol Neurosci 12, 1–10 (1999). https://doi.org/10.1385/JMN:12:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:12:1:1

Index Entries

Navigation