Journal of Molecular Neuroscience

, Volume 11, Issue 3, pp 183–197 | Cite as

Temporal relations among amyloid β-peptide-induced free-radical oxidative stress, neuronal toxicity, and neuronal defensive responses

  • Servet M. Yatin
  • Marina Aksenova
  • Michael Aksenov
  • William R. Markesbery
  • Timothy Aulick
  • D. Allan Butterfield
Article

Abstract

Amyloid β-peptide (Aβ), the main constituent of senile plaques in Alzheimer’s disease (AD) brain, is hypothesized to be a key factor in the neurodegeneration seen in AD. Recently it has been shown that the neurotoxicity of Aβ occurs in conjunction with free-radical oxidative stress associated with the peptide. In the present study, we investigated the temporal relations among the formation of Aβ-associated free radicals, the oxidative damage to, and the activation of antioxidant defense mechanisms in rat embryonic hippocampal neuronal culture subjected to toxic Aβ(25–35). Temporal electron paramagnetic resonance (EPR) spectroscopy results show that synthetic Aβ(25–35) forms free radicals rapidly after solubilization with a high signal intensity at initial time points. At those time points, neuronal toxicity and oxidative stress gradually increase as assessed by reduction of 3-[4,5-dimethylthiazol-2-yl)-2,5-diphenyl] tetrazolium bromide, trypan blue exclusion, formation of reactive oxygen species, and detection of protein carbonyl levels. The latter occurs before neurotoxicity. When the EPR signal intensity of Aβ solution decreases at later time points, neuronal toxicity levels off and remains the same until the end of the experiment. The oxidative-sensitive enzyme creatine kinase (CK) (brain isoform) (CK-BB) content increases at initial points of the Aβ treatment in correlation with the EPR signal to keep the CK activity constant, presumably to overcome the Aβ-induced oxidative insult. CK-BB content returns to normal levels by the end of the experiment. CK activity normalized to CK content implies the presence of inactivated CK molecules during the treatment. Both Mn SOD and Cu/Zn superoxide dismutase (SOD) mRNA levels show robust increases initially, which later return to control level with decreasing oxidative insult. These results are consistent with the notion that Aβ(25–35) promotes a rapid free-radical oxidative stress to neurons, which respond by modulating various oxidative stress-handling genes.

Index Entries

Amyloid β-peptide creatine kinase free radical oxidative stress protein carbonyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K. and Kimura H. (1996) Amyloid β toxicity consists of a Ca2+-independent early phase and a Ca2+-dependent late phase. J. Neurochem. 67, 2074–2078.PubMedCrossRefGoogle Scholar
  2. Aksenov M. Y., Aksenova M. V., Carney J. M., and Butterfield D. A. (1997) Oxidative modification of glutamine synthetase by amyloid β-peptide. Free Radical Res. 27, 267–281.Google Scholar
  3. Aksenov M. Y., Aksenova M. V., Markesbery W. R., and Butterfield D. A. (1998) Amyloid β-peptide (1–40)-mediated oxidative stress in cultured hippocampal neurons: protein carbonyl formation, CK BB expression and the level of Cu, Zn and Mn SOD mRNA. J. Mol. Neurosci., 10, 181–192.PubMedGoogle Scholar
  4. Atwood C. S., Moir R. D., Huang X., Scarpa R. C., Bacarra N. M., Romano D. M., Hartshorn M. A., Tanzi R. E., and Bush A. I. (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 12,817–12,826.CrossRefGoogle Scholar
  5. Banerjee A., Grosso M. A., Brown J. M., Rogers K. B., and Whitman G. J. R. (1991) Oxygen metabolite effects on creatine kinase and cardiac energetics after reperfusion. Am. J. Physiol. 261, H590-H597.PubMedGoogle Scholar
  6. Barger S. W. and Mattson M. P. (1996) Participation of gene expression in the protection against amyloid β-peptide toxicity by the β-amyloid precursor protein. Ann. N Y Acad. Sci. 777, 303–309.PubMedCrossRefGoogle Scholar
  7. Barger S. W., Horster D., Furukawa K., Goodman Y., Krieglstein J., and Mattson M. P. (1995) TNFα and TNFβ protect hippocampal neurons against amyloid β-peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 92, 9328–9332.PubMedCrossRefGoogle Scholar
  8. Bass D. W., Parce J. W., DeChatelet R., Szejda P., Seeds M. C., and Thomas M. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910–1917.PubMedGoogle Scholar
  9. Beal M. (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.PubMedCrossRefGoogle Scholar
  10. Beal M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31, 119–130.PubMedCrossRefGoogle Scholar
  11. Behl C. and Sagara Y. (1997) Mechanism of amyloid β protein induced neuronal cell death: current concepts and future perspectives. J. Neural. Transm. Suppl. 49, 125–134.PubMedGoogle Scholar
  12. Behl C., Davis J., Cole G. M., and Shubert D. (1992) Vitamin E protects nerve cells from amyloid β protein toxicity. Biochem. Biophys. Res. Commun. 186, 944–950.PubMedCrossRefGoogle Scholar
  13. Behl C., Davis J. B., Lesley R., and Schubert D. (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827.PubMedCrossRefGoogle Scholar
  14. Bruce A. J., Malfroy B., and Baudry M. (1996) β-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Proc. Natl. Acad. Sci. USA 93, 2312–2316.PubMedCrossRefGoogle Scholar
  15. Burbaeva G. S., Aksenova M. V., and Makarenko I. G. (1992) Decreased level of creatine kinase BB in the frontal cortex of Alzheimer patients. Dementia 3, 91–94.Google Scholar
  16. Bush A. I., Huang X., Atwood C. S., Cherny R. A., Moir R. D., Goldstein L. E., O’Malley C. M., Saunders A. J., Multhaup G., Beyreuther K., Masters C. L., and Tanzi R. E. (1998) Interactions with ionic zinc, copper and iron govern Aβ redox activity and accumulation in Alzheimer’s disease. Neurobiol. Aging 19(Suppl. 40), 168.Google Scholar
  17. Butterfield D. A. (1982) Spin labeling in disease. Biol. Mag. Reson. 4, 1–78.Google Scholar
  18. Butterfield D. A. (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem. Res. Toxicol. 10, 495–506.PubMedCrossRefGoogle Scholar
  19. Butterfield D. A. and Stadtman E. R. (1997) Protein oxidation process in aging brain. Adv. Cell Aging Gerontol. 2, 161–191.CrossRefGoogle Scholar
  20. Butterfield D. A., Hensley K., Harris M., Mattson M., and Carney J. M. (1994) β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715.PubMedCrossRefGoogle Scholar
  21. Butterfield D. A., Hensley K., Cole P., Subramaniam R., Aksenov M., Aksenova M., Bummer P. M., Haley B. E., and Carney J. M. (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J. Neurochem. 68, 2451–2457.PubMedCrossRefGoogle Scholar
  22. Butterfield D. A., Varadarajan S., LaFontaine M., Subramaniam R., Koppal T., Yatin S., Hensley K., Aksenova M., and Aksenov M. (1998) Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. Neurobiol. Aging 19(Suppl. 262), 1097.Google Scholar
  23. Chacon E. and Acosta D. (1991) Mitochondrial regulation of superoxide by Ca2+: an alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol. Appl. Pharmacol. 107, 117–128.PubMedCrossRefGoogle Scholar
  24. Chauhan A., Chauhan V. P., Brockerhoff H., and Wisniewski H. M. (1991) Action of amyloid β-protein on protein kinase C activity. Life Sci. 49, 1555–1562.PubMedCrossRefGoogle Scholar
  25. Cheng B., Christakos S., and Mattson M. P. (1994) Tumor necrosis factors protect neurons against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis. Neuron 12, 139–153.PubMedCrossRefGoogle Scholar
  26. Chromzynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.Google Scholar
  27. Davies C. A., Mann D. M. A., Sumpter P. Q., and Yates P. O. (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with AD. J. Neurol. Sci. 78, 151–164.PubMedCrossRefGoogle Scholar
  28. DeKosky S. T. and Scheff S. W. (1990) Synapse loss in frontal cortex biopsies in AD: correlation with cognitive severity. Ann. Neurol. 27, 457–464.PubMedCrossRefGoogle Scholar
  29. Davis J. B. (1996) Oxidative mechanisms in β-amyloid cytotoxicity. Neurodegeneration 5, 441–444.PubMedCrossRefGoogle Scholar
  30. Dyrks T., Hartmann T., Masters C., and Beyreuther K. (1992) Amyloidgenicity of βA4 and βA4-bearing amyloid precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267, 18,210–18,217.Google Scholar
  31. Etcheberrigaray R., Ito E., Kim C. S., and Alkon D. L. (1994) Soluble β-amyloid induction of Alzheimer’s phenotype for human fibroblast K+ channels. Science 264, 276–279.PubMedCrossRefGoogle Scholar
  32. Friedlich A. L. and Butcher L. L. (1993) Involvement of free oxygen radicals in β-amyloidosis: an hypothesis. Neurobiol. Aging 15, 443–455.CrossRefGoogle Scholar
  33. Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F., et al. (1995) Alzheimertype neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.PubMedCrossRefGoogle Scholar
  34. Glenney J. R. (1986) Antibody probing on Western blots have been stained with India ink. Anal. Biochem. 156, 315–318.PubMedCrossRefGoogle Scholar
  35. Goate A., Chartier-Harlin M.-C., Mullan M., Brown J., Crawford F., Fidani L., Giuffra L., Haynes A., Irving N., James L., et al. (1991) Segregation of missense mutation in the amyloid precursor protein. Biochem. Biophys. Res. Commun. 155, 608–614.Google Scholar
  36. Goodman Y. and Mattson M. P. (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide toxicity and oxidative injury. Exp. Neurol. 128, 175–182.CrossRefGoogle Scholar
  37. Green L. M., Reade J. L., and Ware C. F. (1984) Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines J. Immunol. Methods 70, 257–268.PubMedCrossRefGoogle Scholar
  38. Gridley K. E., Green P. S., and Simpkins J. W. (1997) Low concentrations of estradiol reduce Aβ(25–35)-induced toxicity, lipid peroxidation and glucose utilization in human SK-N-SH neuroblastoma. Brain Res. 778, 158–165.PubMedCrossRefGoogle Scholar
  39. Guo Q., Robinson N., and Mattson M. P. (1998) Secreted-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NFkB and stabilization of calcium homeostasis. J. Biol. Chem. 273, 12,341–12,351.Google Scholar
  40. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B., and Selkoe D. J. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.PubMedCrossRefGoogle Scholar
  41. Harman D. (1993) Free radical theory of aging: a hypothesis on pathogenesis of senile dementia of the Alzheimer’s type. Age 16, 23–30.CrossRefGoogle Scholar
  42. Harris M., Hensley K., Butterfield D. A., Leedle R. A., and Carney J. M. (1995) Direct evidence of oxidative injury produced by the Alzheimer’s β amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 131, 193–202.PubMedCrossRefGoogle Scholar
  43. Hensley K., Carney J. M., Mattson M. P., Aksenova M. V., Harris M. E., Wu J. F., Floyd R. A., and Butterfield D. A. (1994) A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.PubMedCrossRefGoogle Scholar
  44. Hensley K., Aksenova M., Carney J. M., and Butterfield D. A. (1995a) Amyloid β-peptide spin trapping I: enzyme toxicity is related to free radical spin trap reactivity. Neuroreport 6, 489–493.PubMedCrossRefGoogle Scholar
  45. Hensley K., Hall N., Subramaniam R., Cole P., Harris M., Aksenova M., Aksenov M., Gabbita P., Carney J., Markesberry W., and Butterfield D. A. (1995b) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.PubMedCrossRefGoogle Scholar
  46. Kinouchi H. Epstein C. J., Mizui T., Carlson E., Chen S. F., and Chan P. H. (1991) Attenuation of focal cerebral ischemic injury in transgenic mice over-expressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88, 11,158–11,162.CrossRefGoogle Scholar
  47. Koppal T., Subramaniam R., Drake J., Prasad M. R., and Butterfield D. A. (1998) Vitamin E protects against Alzheimer’s amyloid peptide (25–35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res. 786, 270–273.PubMedCrossRefGoogle Scholar
  48. Laemmli U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  49. LeBel C. P., Ischiropoulus H., and Bondy S. C. (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227–231.PubMedCrossRefGoogle Scholar
  50. Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., and Stadtman E. R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464–478.PubMedGoogle Scholar
  51. Levine R. L., Williams J. A., Stadtman E. R., and Shacter E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357.PubMedCrossRefGoogle Scholar
  52. Lovell M. A., Ehmann W. D., Mattson M. P., and Markesbery W. R. (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol. Aging 18, 457–461.PubMedCrossRefGoogle Scholar
  53. Mark R., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities; evidence for a role in loss of neuronal Ca-homeostasis and cell death. J. Neurosci. 15, 6239–6249.PubMedGoogle Scholar
  54. Markesbery W. R. (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 23, 134–147.PubMedCrossRefGoogle Scholar
  55. Markesbery W. R. and Lovell M. A. (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging 19, 33–36.PubMedCrossRefGoogle Scholar
  56. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) β-amyloid peptide destabilizes calcium homeostasis and renders human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.PubMedGoogle Scholar
  57. Mattson M. P., Barger S. W., Cheng B., Lieberburg I., Smith-Swintosky V. L., and Rydel R. E. (1993) β-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis Alzheimer’s disease. Trends Neurosci. 16, 409–414.PubMedCrossRefGoogle Scholar
  58. Mattson M. P., Mark R. J., Furukawa K., and Bruce A. J. (1997a) Disruption of brain cell ion homeostasis in Alzheimer’s disease by oxyradicals, and signalling pathways that protect therefrom. Chem. Res. Toxicol. 10, 507–517.PubMedCrossRefGoogle Scholar
  59. Mattson M. P., Begley J. G., Mark R. J., and Furukawa K. (1997b) Aβ(25–35) induces rapid lysis of red blood cells: contrast with Aβ(1–42) and examination of underlying mechanisms. Brain Res. 771, 147–153.PubMedCrossRefGoogle Scholar
  60. May P. C., Gitter B. D., Waters D. C., Simmons L. K., Becker G. W., and Small J. S., Robinson P. M. (1992) β-amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol. Aging 13, 605–607.PubMedCrossRefGoogle Scholar
  61. McCord J. M. (1979) Superoxide, superoxide dismutase and oxygen toxicity, in Reviews in Biochemical Toxicology, vol. 1 (Hodgson E., Bend J. R., and Philpot R. M., eds.), Elsevier, Amsterdam, pp. 109–124.Google Scholar
  62. McCord J. M. and Russell W. J. (1988) Inactivation of creatine phosphokinase by superoxide during reperfusion injury, in Oxygen Radicals in Biology and Medicine (Simic K. A., Word J. F., and Von Sonntag C., eds.), Plenum, New York, pp. 869–873.Google Scholar
  63. Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity. J. Immunol. Methods 65, 55–63.PubMedCrossRefGoogle Scholar
  64. Murrell J., Farlow M., Ghetti B., and Benson M. (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254, 97–99.PubMedCrossRefGoogle Scholar
  65. Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., and Floyd R. A. (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87, 5144–5147.PubMedCrossRefGoogle Scholar
  66. Pearson R. C., Esiri M. M., Hiorns R. W., Wilcock G. K., and Powell T. P. (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci USA 82, 4531–4534.PubMedCrossRefGoogle Scholar
  67. Perry G., Richey P. L., Siedlak S. L., Smith M. A., Mulvihill P., DeWitt D. A., Barnett J., Greenberg B. D., and Kalaria R. N. (1993) Immunocytochemical evidence that the β-protein precursor is an integral component of neurofibrillary tangles of Alzheimer’s disease. Am. J. Pathol. 143, 1586–1593.PubMedGoogle Scholar
  68. Pettegrew J. M., Panchalingam K., Klunk W. E., McClure R. J., and Muenz L. R. (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol. Aging 15, 117–132.PubMedCrossRefGoogle Scholar
  69. Refolo L. M., Wittenberg I. S., Friedrich V. L. Jr., and Robakis N. K. (1991) The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J. Neurosci. 11, 3888–3897.PubMedGoogle Scholar
  70. Richardson J. S. (1994) Free radicals in the genesis of Alzheimer’s disease. Ann. NY Acad. Sci. 695, 73–76.CrossRefGoogle Scholar
  71. Sagara Y., Tan S., Maher P., and Schubert D. (1998) Mechanisms of resistance to oxidative stress in Alzheimer’s disease. Biofactors 8, 45–50.PubMedGoogle Scholar
  72. Schubert D., Behl C., Lesley R., Brack A., Dargusch R., Sagara Y., and Kimura H. (1995) Amyloid peptides are toxic via a common oxidative mechanism. Proc. Natl. Acad. Sci. USA 92, 1989–1993.PubMedCrossRefGoogle Scholar
  73. Selkoe D. J. (1989) The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer’s disease. Ann. Med. 21, 73–76.PubMedGoogle Scholar
  74. Selkoe D. J. (1996) Amyloid β-protein and genetics of Alzheimer’s disease. J. Biol. Chem. 271, 18,295–18,298.Google Scholar
  75. Shearman M. S., Hawtin S. R., and Tailor V. J. (1995) The intracellular component of cellular [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. J. Neurochem. 68, 218–227.Google Scholar
  76. Sims N. R., Finegan J. M., Blass J. P., Bowen D. M., and Neary D. (1987) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res. 436, 30–38.PubMedCrossRefGoogle Scholar
  77. Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., and Floyd R. A. (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease. Proc. Natl. Acad. Sci. USA 88, 10,540–10,543.Google Scholar
  78. Smith C. D., Carney J. M., Tatsuno, T., Stadtman E. R., Floyd R. A., and Markesbery W. R. (1994) Protein oxidation in aging brain. Ann. NY Acad. Sci. 663, 110–119.CrossRefGoogle Scholar
  79. Smith M. A., Hirai K., Hsiao K., Pappolla M. A., Harris P. L., Siedlak S. L., Tabaton M., and Perry G. (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215.PubMedCrossRefGoogle Scholar
  80. Stadtman E. R. (1992) Protein oxidation and aging. Science 257, 1120–1124.CrossRefGoogle Scholar
  81. Subramaniam R., Koppal T., Yatin S., Jordan B., and Butterfield D. A. (1998) The free radical antioxidant vitamin E protects cortical synaptosomal membrane proteins from amyloid β-peptide (25–35) toxicity but not from hydroxynonenal toxicity: Relevance to the free radical hypothesis of Alzheimer’s disease. Neurochem. Res. 23, 1403–1410.PubMedCrossRefGoogle Scholar
  82. Tomiyama T., Shoji A., Kataoka K., Suwa Y., Asano S., Kaneko H., and Endo N. (1996) Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J. Biol. Chem. 271, 6839–6844.PubMedCrossRefGoogle Scholar
  83. Ueda K., Shinohara S., Yagami T., Asakura K., and Kawasaki K. (1997) Amyloid β protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J. Neurochem. 68, 265–271.PubMedCrossRefGoogle Scholar
  84. Wallace M. A. (1994) Effects of Alzheimer’s disease-related β amyloid protein fragments on enzyme metabolizing, phosphoinositides in brain. Biochim. Biophys. Acta 1227, 183–187.PubMedGoogle Scholar
  85. Wisniewski K., Wisniewski H., and Wen G. (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.PubMedCrossRefGoogle Scholar
  86. Yan S. D., Chen X., Fu J., Chen M., Zhu H., Roher A., Slattery T., Zhao L., Nagashima M., Morser J., Migheli A., Nawroth P., Stern D., and Schmidt A. M. (1996) RAGE and amyloid β-peptide neurotoxicity in Alzheimer’s disease Nature 382, 685–691.PubMedCrossRefGoogle Scholar
  87. Yankner B. A., Duffy L. K., and Kirschnier D. A. (1990) Neurotrophic and neurotoxic effects of amyloid β-protein: reversal by Tachykinin neuropeptides. Science 250, 279–282.PubMedCrossRefGoogle Scholar
  88. Yatin S., Aksenov M., and Butterfield D. A. (1999) The antioxidant vitamin E modulates amyloid β-peptide induced creatine kinase activity inhibition and increased protein oxidation: Implications for the free radical hypothesis of Alzheimer’s disease. Neurochem. Res. 24, 427–435.PubMedCrossRefGoogle Scholar
  89. Zang Z., Rydel R. E., Drzewiecki G. J., Fuson K., Wright S., Wouglis M., Audia J. E., May P. C., and Hyslop P. A. (1996) Amyloid β-mediated oxidative and metabolic stress in rat cortical neurons: no direct evidence for a role for H2O2 generation. J. Neurochem. 67, 1595–1606.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Servet M. Yatin
    • 1
  • Marina Aksenova
    • 2
  • Michael Aksenov
    • 3
  • William R. Markesbery
    • 3
  • Timothy Aulick
    • 1
  • D. Allan Butterfield
    • 1
    • 2
    • 3
  1. 1.Department of Chemistry and Center of Membrane SciencesUniversity of KentuckyLexington
  2. 2.Department of PharmacologyUniversity of KentuckyLexington
  3. 3.Sanders-Brown Center on AgingUniversity of KentuckyLexington

Personalised recommendations